Chlamydien bauen sich einen Eingang in menschliche Zellen

09.03.2020 - Deutschland

Chlamydien, eine pathogene Bakterienart, müssen in menschliche Zellen eindringen, um sich zu vermehren. Forscher der Heinrich-Heine-Universität Düsseldorf (HHU) haben nun das Bakterienprotein SemC identifziert, das in die Zelle eingeschleust wird und dort die Zellmembran an der Eintrittsstelle umstrukturiert. SemC zwingt das zelleigene Protein SNX9, ihm zu helfen. Zusammen mit Kollegen aus Paris und München veröffentlichte ein Forschungsteam um Prof. Dr. Johannes Hegemann und Dr. Katja Mölleken diese Ergebnisse in der Fachzeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS).

HHU / Dr. Sebastian Hänsch

Mithilfe von Adhäsinen (grau) bindet ein Chlamydium an die Zelle und bringt ihr SemC (grün) ein. Es verbiegt die PM, dort bindet das humane SNX9 (rot), und hier dringt das Bakterium ein.

Es gibt zwei Arten von Chlamydien, die den Menschen befallen: Chlamydia trachomatis und Chlamydia pneumoniae (Cpn). Während erstere Geschlechtserkrankungen auslösen, führen Cpn zu akuten Infektionen der oberen und unteren Atemwege. Darüber hinaus werden sie mit diversen chronischen Erkrankungen wie Bronchitis und Asthma und auch mit Lungenkrebs in Verbindung gebracht, aber auch mit der Alzheimer-Demenz und der Atherosklerose. Die Mehrheit der Deutschen wird im Laufe ihres Lebens von diesen Bakterien befallen.

Um in die menschliche Zelle zu gelangen, müssen die Chlamydien zunächst deren Umgrenzung, die sogenannte Plasmamembran (PM), überwinden. Die Membran besteht aus einer Doppelschicht von Lipiden mit eingelagerten Proteinen. Durch Einstülpung von Bereichen der PM kann die Zelle Flüssigkeit und Partikel aus der Umgebung in das Zellinnere aufnehmen, was als „Endozytose“ bezeichnet wird.

Krankheitserreger wie Chlamydien, die ebenfalls ins Zellinnere gelangen müssen, überlisten den Endozytose-Mechanismus für ihre Zwecke. Die Arbeitsgruppe von Prof. Dr. Johannes Hegemann am HHU-Institut für Funktionelle Genomforschung der Mikroorganismen hat nun ein chlamydiales Protein identifiziert, das die entscheidende Rolle beim Eindringen des Cpn in die menschliche Zelle spielt: sein Name lautet SemC; sein Entdecker ist Dr. Gido Murra aus Prof. Hegemanns Arbeitsgruppe.

In einem ersten Schritt schafft es das Chlamydium, SemC in die Wirtszelle einzuschleusen. Die Kolleginnen vom Pasteur-Institut aus Paris konnten zeigen, dass SemC über eine von vielen pathogenen Bakterien genutzte sogenannte Proteinnadel direkt vom Bakterium in das Zellinnere transportiert wird. Dort angekommen, bindet das Protein an die innere Plasmamembran und verändert lokal deren Struktur. Dadurch ändert sich die Gestalt der Membran: Sie wird stärker gekrümmt. Dazu Dr. Katja Mölleken: „Mit SemC haben wir das erste Protein eines Infektionserregers überhaupt entdeckt, das in der Lage ist, die PM in dieser Art zu verändern.“

Die durch SemC ausgelöste stärkere Membrankrümmung führt nun zur Bindung des körpereigenen Proteins SNX9 an diese Stelle, wo es sowohl an die gekrümmte Membran als auch an das dort sitzende SemC bindet und die Krümmung weiter verstärkt. SNX9 ist ein für die Endozytose-Prozesse der menschlichen Zelle essentielles Protein, indem es das Aktinzytoskelett an der einstülpenden PM aufbaut. Die SemC-vermittelte SNX9-Bindung an die PM erlaubt nun dem Chlamydium, von außen an der gekrümmten Stelle der PM durch Endozytose in die Zelle einzudringen und sich im Zellinneren weiter zu vermehren. „Die Struktur der PM der Wirtszelle ist also ein wichtiger Faktor, um die Infektion einer Zelle durch den Krankheitserreger zu ermöglichen“, betont Dr. Sebastian Hänsch. Und Dominik Spona ergänzt: „So schafft sich das Bakterium quasi seine eigene Tür in die Zelle.“

Die Forschungsgruppe hat einen weiteren wichtigen Beleg für das von Cpn induzierte Zusammenspiel von SNX9 und SemC gefunden. Die Kollegen des Deutschen Zentrums für Neurodegenerative Erkrankungen in München schufen menschliche Zellen, in denen die Menge an SNX9 Protein stark verringert worden war. Dominik Spona: „Bei diesen Zellen fiel es Cpn deutlich schwerer, die Plasmamembran mittels Endozytose zu überwinden und die Zelle zu infizieren.“

Die Entdeckung eröffnet neue Möglichkeiten, um eine Chlamydieninfektion zu therapieren, oder auch, um gezielt Impfstoffe zu entwickeln, die die Bakterien bereits frühzeitig abwehren. Dazu Arbeitsgruppenleiter Prof. Hegemann: „Ist der genaue Mechanismus entschlüsselt, ergeben sich daraus mögliche Angriffspunkte, an denen man diesen Mechanismus blockieren kann, zum Beispiel indem man die SemC-Bindung an die PM oder an das körpereigene SNX9-Protein unterbindet.“

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!