Präzise Veränderung des Erbguts – mit Licht
Proteinkonstrukt names CASANOVA schaltet die CRISPR Genschere im Dunkeln ab
Dominik Niopek
Genau gesagt, steht CASANOVA für „CRISPR/Cas Aktivierung durch ein neues, optogenetisches Verfahren basierend auf Anti-CRISPR Proteinen“. Anti-CRISPR Proteine sind kleine Eiweiße aus Bakterien-infizierenden Viren, die in der Lage sind, die CRISPR Genschere zu binden. Im gebundenen Zustand ist die Genschere blind und nicht mehr in der Lage, ihre Zielsequenz im Erbgut zu erreichen. Dadurch ist das virale Erbgut vor den Angriffen durch die Genschere geschützt.
Die Forscher um Dr. Dominik Niopek, Gruppenleiter für Synthetische Biologie am Institut für Pharmazie und Molekulare Biotechnologie und dem Bioquant-Zentrum der Universität Heidelberg, und Prof. Dr. Roland Eils, Direktor des Zentrums für digitale Gesundheit am Berliner Institut für Gesundheitsforschung (BIH) und der Charité - Universitätsmedizin sowie Leiter der Health Data Science Unit am Heidelberger Universitätsklinikum, bauten Anti-CRISPR Proteine mit Hilfe gentechnischer Verfahren so um, dass diese von außen an- und abgeschaltet werden können – und zwar mit Licht. Dazu integrierten die Forscher einen molekularen Lichtsensor aus der Haferpflanze in ein Anti-CRISPR Protein. Anschließend brachten die Forscher das so erzeugte Hybrid – genannt CASANOVA – zusammen mit der CRISPR Genschere in humane Zellkulturen ein.
„Im Dunkeln bindet CASANOVA effizient an die CRISPR Genschere und schaltet diese dadurch ab“, erläutert Niopek. „Trifft jedoch blaues Licht auf das Proteinpaar in der Zelle, so hat die Romanze ein jähes Ende. Die Genschere löst sich vom Anti-CRISPR Protein und wird dadurch aktiv.“
Mit ihrer Methode konnten die Forscher um Niopek und Eils die Erbgutsequenz in menschlichen Zellen durch Beleuchtung von außen gezielt verändern. CASANOVA ermöglichte es außerdem, Gene auf Knopfdruck an- und wieder abzuschalten. Sogar die Bindungsdynamik der CRISPR Genschere an ihre Zielsequenz im Erbgut lebender Zellen konnten die Wissenschaftler live unter dem Mikroskop verfolgen.
„CASANOVA ist nicht nur ein innovatives Werkzeug für die Grundlagenforschung, z.B. um das Zusammenspiel zwischen der Aktivität von Genen und dem Verhalten von Zellen zu studieren. Die Methode könnte in Zukunft auch für besonders präzise Therapien genetischer Erkrankungen relevant werden“, sagt Eils.
„Die Vielfältigkeit und einfache Anwendbarkeit von CASANOVA ist dabei ein entscheidender Vorteil gegenüber vorhergehenden Methoden zur Kontrolle von CRISPR/Cas9“, ergänzt Felix Bubeck. Gemeinsam mit Mareike Hoffmann, Doktorandin am Deutschen Krebsforschungszentrum, hat er viele der entscheidenden Experimente in Niopeks und Eils‘ Labor durchgeführt. Bubeck ist Student im Masterstudiengang Molekulare Biotechnologie an der Universität Heidelberg und Ko-Erstautor der Publikation.