Extrem klein und schnell: Laser zündet heißes Plasma

HZDR-Physiker beobachten Plasma-Beschleunigung mit beispielloser Präzision

21.09.2018 - Deutschland

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt.

Copyright Juniks/HZDR

HZDR-Physiker beobachten Plasma-Beschleunigung mit beispielloser Präzision: Berechnete Entwicklung der Plasmadichte nach der Bestrahlung eines Silizium-Gitters mit dem Hochintensitäts-Kurzpulslaser des SLAC (USA).

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom HZDR. Neben Kliniken könnten Universitäten und Forschungseinrichtungen von der neuen Beschleunigertechnologie profitieren. Vor der Nutzungsreife ist jedoch noch viel Forschungs- und Entwicklungsarbeit zu leisten.

So werden mit dem DRACO-Laser am Helmholtz-Zentrum Dresden-Rossendorf derzeit Energien von rund 50 Megaelektronenvolt erreicht. Um einen Tumor mit Protonen (den leichtesten Ionen) zu bestrahlen, benötigt man 200 bis 250 Megaelektronenvolt. Aufgrund seiner ultrakurzen Pulse im Bereich weniger Femtosekunden – in dieser Zeit durchquert ein Lichtstrahl gerade mal den Bruchteil eines menschlichen Haars – erreicht der DRACO-Laser eine Leistung von knapp einem Petawatt. Das entspricht dem Hundertfachen der weltweit erzeugten, mittleren elektrischen Leistung.

„Wir müssen die einzelnen Vorgänge bei der Beschleunigung von Elektronen und Ionen noch viel besser verstehen“, betont Kluge. Gemeinsam mit Kollegen aus Dresden, Hamburg, Jena, Siegen und aus den USA gelang es nun erstmalig, quasi live diese extrem schnell ablaufenden Prozesse am Nationalen Beschleunigerlabor SLAC der amerikanischen Universität Stanford zu beobachten. Dazu benötigen die Wissenschaftler zeitgleich zwei besondere Laser. Der Hochintensitäts-Laser am SLAC verfügt über eine Leistung von immerhin rund 40 Terawatt – ist also etwa 25-fach schwächer als DRACO. Beim Auftreffen auf die Materialprobe (Target) zündet er das Plasma. Der zweite Laser ist ein Röntgenlaser, mit dem sich die einzelnen Prozesse genau aufzeichnen lassen: von der Ionisation der Teilchen im Target und der Expansion des Plasmas über die auftretenden Plasma-Oszillationen und Instabilitäten beim Heizen der Elektronen auf einige Millionen Grad Celsius bis hin zur effizienten Beschleunigung der Elektronen und Ionen.

„Mit der Methode der Kleinwinkel-Streuung haben wir Messungen im Femtosekunden-Bereich und auf Skalen von wenigen Nanometer bis hin zu einigen hundert Nanometer realisiert“, berichtet Melanie Rödel, die als HZDR-Doktorandin federführend am Experiment beteiligt war. Mehrjährige Arbeiten waren nötig, um diese Bereiche zu erschließen und saubere Signale auf den Streubildern des Röntgenlasers zu erhalten. „Die neue Diagnostik für laserbasierte Beschleuniger hat unsere Erwartungen an die räumliche und zeitliche Auflösung hervorragend bestätigt. Damit haben wir das Fenster für die direkte Beobachtung plasmaphysikalischer Prozesse in Echtzeit geöffnet“, freut sich Dr. Josefine Metzkes-Ng, Leiterin einer der beteiligten Nachwuchsgruppen am Institut für Strahlenphysik des HZDR.

Ab 2019 steht ein Experimentieraufbau der nächsten Generation mit einem deutlich leistungsstärkeren Kurzpuls-Laser an der Helmholtz International Beamline for Extreme Fields (HIBEF) zur Verfügung, die das HZDR derzeit im Rahmen einer internationalen Kollaboration am weltstärksten Röntgenlaser European XFEL in der Nähe von Hamburg aufbaut.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...