3D-Modell der menschlichen Plazenta entwickelt

06.08.2018 - Österreich

Die Plazenta ist das verbindende Organ zwischen Mutter und Embryo. Ihre Hauptfunktionen sind der Austausch von Nährstoffen, Gasen und Stoffwechselprodukten sowie die Produktion von Hormonen und anderen Substanzen, die für die Embryonalentwicklung von essenzieller Bedeutung sind. Fehlfunktionen der Plazenta gelten als Hauptursache für Komplikationen in der Schwangerschaft und können zu Fehlgeburten oder anderen schweren Störungen führen, die sowohl die Mutter als auch das Baby gefährden. Bis heute sind die grundlegenden Mechanismen dieser Erkrankungen weitgehend ungeklärt. Nicht zuletzt deshalb, weil es bis jetzt noch kein zuverlässiges humanes Zellkulturmodellsystem gab.

Nun ist es Forschern der MedUni Wien gelungen, ein 3D-Modell der humanen Plazenta zu entwickeln. Das 3D-„in vitro“-Modell der frühen humanen Plazenta entstand in Kooperation der Forschungsgruppen von Martin Knöfler an der Universitätsklinik für Frauenheilkunde der MedUni Wien (Abteilung für Geburtshilfe und Gynäkologie) und von Paulina Latos vom Zentrum für Anatomie und Zellbiologie der MedUni Wien.

Erstes Organoidmodell der Plazenta – andere Gewebekulturmodelle als Basis

„In den vergangenen Jahren wurden zusehends 3D-Gewebekulturmodelle, genannt Organoide, von verschiedensten humanen Organen etabliert. Diese Organoide bestehen zumeist aus nur wenigen Zelltypen des jeweiligen Gewebes und sind deshalb einfacher strukturiert als das Ursprungsorgan selbst“, erklären die ForscherInnen. Auf dieser Basis ist es dem Team der Medizinischen Universität Wien gelungen, erstmals auch ein derartiges Organoidmodell der Plazenta, bestehend aus der vorherrschenden plazentaren Zellpopulation, dem sogenannten Trophoblasten, zu entwickeln.

Knöfler und Latos erklären: „Als reines Trophoblast-Organoid ohne Blutgefäße und Bindegewebsanteile spiegelt dieses Modell den Trophoblast-spezifischen Plazentaaufbau in der Petrischale wider.“ Gelungen ist dies durch die Optimierung jener Kulturbedingungen, die schon bei Organoidmodellen anderer Gewebe erfolgreich angewandt worden waren.

Ein wesentlicher Vorteil der Plazenta-Organoide ist deren Fähigkeit zur Selbstorganisation, Selbsterneuerung und konstanter Vermehrung, betonen die MedUni Wien-WissenschafterInnen, da diese sowohl Stamm- als auch Vorläuferzellen beinhalten. Zusätzlich eignen sich diese 3D-Strukturen auch zur Darstellung der drei Hauptzelltypen innerhalb der humanen Trophoblastpopulation.

Die bahnbrechenden Vorteile dieses Organoidsystems konnten die Forscher der MedUni Wien mit einer Studie untermauern, in der die Rolle des WNT-Signalwegs (der in vielen Geweben entscheidend für die Entwicklung und das Wachstum ist) in der Selbsterneuerung und Differenzierung der Trophoblastorganoide erhärtet wurde. Dieses Organoidmodellsystem kann außerdem pharmakologisch und genetisch manipuliert werden. Dadurch eröffnen sich neue Möglichkeiten, physiologische und pathophysiologische Vorgänge in der humanen Plazenta zu untersuchen.

„Dass es bisher keine Zellkulturmodellsysteme für die humane Plazenta gegeben hat, machte es bislang schwierig, wenn nicht sogar unmöglich, die Ursachen von Fehlfunktionen zu studieren. Die Situation ist durch die Etablierung dieses Plazenta-Organoidsystems entscheidend verbessert und wird künftig unter anderem die Arzneimittelentwicklung und in weiterer Folge medizinische Behandlungsmöglichkeiten bei gefährlichen Schwangerschaftserkrankungen vorantreiben“, betont Knöfler, einer der  international führenden Experten in der Plazentaforschung und Letztautor der Studie.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller