Neue Einblicke in molekulare Prozesse bei Parkinson

07.05.2018 - Deutschland

Das Protein α-Synuclein ist schwer zu fassen. Das Molekül, das eine zentrale Rolle bei der Parkinsonerkrankung spielt, wechselt seine Gestalt mehrere Tausend mal pro Sekunde. Durch einen Trick ist es Wissenschaftlern des Forschungszentrums Jülich und der Heinrich-Heine-Universität Düsseldorf nun gelungen, die molekularen Eigenschaften des flatterhaften Proteins detailliert in Aktion zu entschlüsseln. Sie hatten das Molekül zunächst mit einer neuen Technik in seiner natürlichen wässrigen Umgebung schockgefroren und anschließend mittels Kernspinresonanzspektroskopie sichtbar gemacht.

Copyright: HHU / M. Etzkorn

Einblicke in die Wechselwirkung des Proteins α-Synuclein (blau) mit Membranen (weiß/rot) zeigen wie diese die Bildung von parkinsonrelevanten Proteinablagerungen (grün) sowohl positiv als auch negativ beeinflussen können.

α-Synuclein kommt zum einen als normaler Bestandteil in den Nervenzellen vor. Andererseits bildet er aber auch mikroskopisch kleine Ablagerungen, die sich in den Nervenzellen von Parkinson-Patienten nachweisen lassen. „Als sogenanntes intrinsisch ungeordnetes Protein nimmt es ständig verschiedene räumliche Faltungszustände, sogenannte Konformationen, ein“, erklärt Prof. Henrike Heise. Dadurch zählt es zu einer Gruppe von Eiweißbausteinen, deren Erforschung besonders herausfordernd ist. Die Methode der Kernspinresonanzspektroskopie (engl. Nuclear Magnetic Resonance, NMR) ist praktisch Standard, wenn es darum geht, die Struktur biologischer Moleküle extrem genau zu vermessen. „Doch die verschiedenen Zustände des Parkinsonproteins wechselten bisher zu schnell, um direkt abgebildet zu werden. Daher konnte man bis jetzt nur zeitliche Durchschnittswerte messen“, erläutert Heise.

Am Biomolekularen NMR-Zentrum des Forschungszentrums Jülich und der Universität Düsseldorf hat die Chemikerin nun eine Methode entwickelt, die einen besseren Einblick ermöglicht. Zunächst hatten sie und ihre Kollegen die Proben auf Temperaturen von bis zu minus 173 Grad Celsius abgekühlt. Auf molekularer Ebene hat das einen ähnlichen Effekt, wie wenn man die einzelnen Momentaufnahmen eines schnell ablaufenden Films zu einem einzigen Standbild überlagert. Analog verhalten sich auch die flatterhaften Parkinsonproteine. Sie werden in der eiskalten, erstarrten Flüssigkeit eingesperrt, und ermöglichen es den Forschern so, das gesamte Ensemble verschiedener Konformationen gleichzeitig in allen Details zu beobachten. „Die erzielten Ergebnisse zeigen etwa welche Zustände das Protein einnehmen kann, wenn es sich in seiner ‚gesunden‘ Form befindet, aber auch, wie sich diese Konformationen ändern, wenn es mit Membranen wechselwirkt oder fehlgefaltete Aggregate bildet“, erläutert Henrike Heise.

Art der Zellwand ist entscheidend

Die Interaktion des α-Synucleins mit der Zellwand stand auch im Fokus einer Untersuchung, die ein Forscherteam unter Leitung von Dr. Manuel Etzkorn durchgeführt hat. Die Wechselwirkungen mit der Zellmembran bestimmter Nervenzellen gelten als ein wichtiger Faktor bei der Entstehung von Parkinson. Sie sind möglicherweise der Ausgangspunkt für die Ausbildung erster Keimzellen, die dann zu größeren Ablagerungen anwachsen. Im Krankheitsverlauf könnten diese die Zellwand zerstören und so zum Absterben der betroffen Nervenzellen führen.

„Unsere Daten zeigen erstmalig eine klare Verbindung zwischen den Konformationen, die durch die Wechselwirkung mit der Zellmembran entstehen können und wie diese die krankheitsrelevante Fehlfaltung von α-Synuclein begünstigen oder auch verhindern“, erklärt Manuel Etzkorn. Neben den neuartigen Einblicken in grundlegende Mechanismen kann das bessere Verständnis der Wechselwirkungen daher auch neue Therapiewege eröffnen.

Ein internationales Team, an dem sich unter anderem vier Nachwuchsgruppen beteiligten, hatten die Ergebnisse erst möglich gemacht. Die Arbeiten fanden am Biomolekularen NMR-Zentrum statt, welches das Forschungszentrums Jülich und die Heinrich-Heine-Universität Düsseldorf gemeinsam auf dem Jülicher Campus betreiben.

Originalveröffentlichung

B. Uluca, T. Viennet, D. Petrović, H. Shaykhalishahi, F. Weirich, A. Gönülalan, B. Strodel, M. Etzkorn, W. Hoyer, and H. Heise; "DNP-Enhanced solid-state NMR at Cryogenic Temperatures: a Tool to Snapshot Conformational Ensembles of α-Synuclein in Different States"; Biophys. J.; 2018, 114 (7), 1614-1623.

T. Viennet, M.M. Wördehoff, B. Uluca, C. Poojari, H. Shaykhalishahi, D. Willbold, B. Strodel, H. Heise, A.K. Buell, W. Hoyer, and M. Etzkorn; "Structural insights from lipid-bilayer nanodiscs link α-Synuclein membrane binding modes to amyloid fibril formation"; Communications Biology; 2018, AIP.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren