Wie aus einem Protein im menschlichen Blut nützliche Gele entstehen

07.03.2018 - Deutschland

Aus dem Blut ins Labor: Das Protein Albumin übernimmt viele lebenswichtige Prozesse im menschlichen Körper. In der Natur kommt es nur gelöst in Wasser als Lösung vor. Chemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) haben ein Verfahren entwickelt, mit dem sich verschiedene Gele auf Albuminbasis herstellen lassen. Die Erkenntnisse könnten künftig dabei helfen, neuartige Arzneiträgersysteme zu entwickeln, die besser in den Blutkreislauf gelangen können.

Albumin ist ein Protein, das in großen Mengen im Blut aller Säugetiere vorkommt. Das menschliche Blut hat einen Anteil von bis zu 60 Gramm pro Liter. "Albumin ist für viele wichtige Prozesse im Körper zuständig: Es kann die Zellmembranen durchdringen und so zum Beispiel essentielle Substanzen in die Zellen transportieren und es hilft auch bei der Entgiftung der Zellen", sagt Prof. Dr. Dariush Hinderberger, Chemiker an der MLU. Er arbeitet seit über zehn Jahren zu Albumin und erforscht die Struktur, die Dynamik und die Transporteigenschaften des Proteins. Es wird bereits heute in der Pharmaindustrie bei der Herstellung von Impfstoffen und Medikamenten eingesetzt - allerdings nicht als Gel.

"Die Albumin-Gele entstehen bisher eher als ärgerliches Zufallsprodukt bei der normalen Laborarbeit", sagt Hinderberger. Sie könnten aber künftig bei der Herstellung sogenannter Wirkstoff-Implantate zum Einsatz kommen. Diese werden dem Patienten einmalig gespritzt und lagern sich dann im Körper ab. Nach und nach wird dann vom Körper der Trägerstoff zersetzt und der gewünschte Wirkstoff über einen längeren Zeitraum freigesetzt. So erspart sich der Patient ein regelmäßiges Spritzen. "Um zu überprüfen, ob sich auf der Basis von Albumin-Gelen potentielle Wirkstoffträger entwickeln lassen, muss man aber zunächst verstehen, wie und warum sich die Gele bilden", fasst Hinderberger die Idee hinter seiner neuen Studie zusammen.

Die Chemiker der MLU untersuchten deshalb verschiedene Albumin-Lösungen. "Wir wollten herausfinden, was genau mit den Proteinteilchen und ihrer Struktur passiert, wenn wir bestimmte Eigenschaften verändern", sagt Hinderberger. Die Forscher testeten, welchen Einfluss der pH-Wert der Lösung auf die Gelbildung hat. Anschließend erhitzten sie die Flüssigkeiten und analysierten dann zu verschiedenen Zeitpunkten die Veränderungen. Mit Hilfe der Infrarot-Spektroskopie konnte die Gruppe nun zum Beispiel zeigen, wie Albumin bei Hitze seine Struktur verändert: Das Proteinknäuel öffnet sich und kann so leichter mit anderen Teilchen verklumpen, wodurch das Gel entsteht. Auf Grundlage dieser Erkenntnis konnte die Forschergruppe nun noch ein weiteres, wesentlich weicheres Gel herstellen. Dafür verlangsamten sie den Gelbildungsprozess, setzten die Temperatur herunter und wählten eine Lösung mit einem relativ neutralen pH-Wert. "Unter diesen Bedingungen veränderten die einzelnen Albuminmoleküle ihre Struktur nur wenig, wodurch sich die grundlegend andere mechanische Eigenschaften des Gels ergeben", erklärt Hinderberger.

Anschließend gingen die Forscher der Frage nach, ob sich die Albumin-Gele grundsätzlich als Wirkstoffträger für Medikamente eignen. In ersten Untersuchungen konnten sie zeigen, dass sich zum Beispiel Fettsäuren sehr gut mit dem Gel verbinden lassen. Ob sich die Stoffe auch für pharmazeutische Wirkstoffe im menschlichen Körper eignen, muss allerdings in Folgestudien noch geklärt werden.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!