Mit Nanoporen gegen Krankheiten

Neuartige Filtermedien mit Porengrößen im Mikro- und Nanometerbereich sollen unter anderem die schonende Zellseparation von Blut ermöglichen

26.02.2010 - Deutschland

Blut- oder Plasmaspender kennen ihn vielleicht - den Zellseparator. In diesem System werden aus dem Blut Zellen von nicht zellulären Begleitstoffen getrennt - zum Beispiel Blutkörperchen vom Blutplasma. Da die Unversehrtheit der abgetrennten Zellen oberste Priorität besitzt, werden an diesen Prozess höchste Qualitätsanforderungen gestellt. Da biologische Zellen gegenüber mechanischer Beanspruchung empfindlich reagieren und zusätzlich zu Verklumpungen neigen, muss die Zellseparation möglichst sanft und sehr zuverlässig funktionieren. Während die Zellseparation für große Mengen Blut - wie bei der Plasmaspende - Standard ist, sind schonende Verfahren für kleine Probenmengen noch Gegenstand der Forschung.

Ein interdisziplinäres Forschungsteam der Technischen Universität Chemnitz entwickelt derzeit für diese Form der Zellseparation neuartige Filtermedien mit Porengrößen im Mikro- und Nanometerbereich, um die Zellen mit minimalem mechanischem Stress isolieren zu können. Im so genannten Innovationslabor "Mikrosysteme mit hierarchischen Polymerstrukturen" (MikroHips) arbeiten die Professur Physikalische Chemie unter Leitung von Prof. Dr. Werner A. Goedel, die Professur für digitale Drucktechnologien und Bebilderungstechnik unter Leitung von Prof. Dr. Reinhard Baumann und das Zentrum für Mikrotechnologien unter Leitung von Prof. Dr. Thomas Geßner zusammen. Die Professur für Marketing und Handelsbetriebslehre, die von Prof. Dr. Cornelia Zanger geleitet wird, unterstützt das Projekt aus betriebswirtschaftlicher Sicht auf dem Weg zur Marktreife und koordiniert alle Anfragen aus Wissenschaft und Praxis. Den Chemnitzer Wissenschaftlern steht zudem ein industrieller Beirat mit Vertretern aus den Bereichen Biotechnologie und Diagnostik zur Seite. Das Bundesministerium für Bildung und Forschung fördert das Projekt bis Ende 2011 mit 1,2 Millionen Euro im Rahmen des Förderprogramms "Forschung für den Markt im Team" (ForMaT).

In einem Teilprojekt widmen sich die Wissenschaftler insbesondere einem Spezialfall der Zellseparation - der Plasmaseparation in der dezentralen Humandiagnostik. "Dabei werden alle Blutzellen vom flüssigen Blutplasma getrennt, da diese die Ergebnisse der Blutanalyse beeinflussen können", erklärt Geßner und ergänzt: "Durch die Möglichkeiten der Mikrofluidik konnten in den letzten Jahrzehnten viele Analysen in so genannten Lab-on-Chip-Systemen miniaturisiert werden. Sind diese medizintechnischen Systeme klein, mobil und hochintegriert, spricht man auch von patientennahen oder auch Point-of-Care-Systemen. Diese können sowohl von medizinischem Fachpersonal als auch von Laien verwendet werden." Vorteile solcher Point-of-Care-Systeme sind neben den geringen Probenmengen, die benötigt werden, vor allem die zeitnah vorliegenden Analyseergebnisse. Diese können dann zu einer schnelleren Einleitung geeigneter Therapiemaßnahmen und damit zu einer schnelleren Genesung des Patienten führen. Solche mobilen Analysesysteme haben zum Beispiel in Form von Blutzucker- oder Lactose-Messgeräten längst Einzug in unseren Alltag gefunden.

"Bei der Entwicklung solcher komplexen Systeme besteht jedoch das Problem, dass nicht alle makroskopischen Prozesse ohne weiteres miniaturisiert und in ein mikrofluidisches Analysesystem integriert werden können", sagt Geßner. Ein weiteres zentrales Ziel des MikroHips-Projektes bestehe daher in der Entwicklung eines Plasmaseparations-Moduls basierend auf Mikrosieben. Und dazu haben die Forschungsgruppen der Professoren Goedel und. Baumann eine Technologie patentiert, mit der aus einer Kombination von traditionellen Membrantechnologien und Drucktechniken entsprechende Mikrosiebe individuell und effizient hergestellt werden können. Diese Mikrosiebe helfen entscheidend bei der Integration der Zellseparation in künftige Lab-on-Chip-Systeme.

Weitere News aus dem Ressort Forschung & Entwicklung

Diese Produkte könnten Sie interessieren

qTOWER iris

qTOWER iris von Analytik Jena

Real-time-PCR-Thermocycler qTOWER iris

Feel Free to Explore!

Echtzeit-PCR-Thermocycler
CyBio FeliX

CyBio FeliX von Analytik Jena

Der kompakte Pipettierroboter für jeden Labortisch

Flexible Pipettierplattform für vollautomatisches ein- bis mehrkanaliges Liquid Handling

Pipettierroboter
qTOWER³ auto

qTOWER³ auto von Analytik Jena

Real-Time PCR - vollautomatisiert für höchste Effizienz

Kompakter, zuverlässiger und kosteneffektiver qPCR-Thermocycler für den Hochdurchsatz

Echtzeit-PCR-Thermocycler
Octet RH16 and RH96

Octet RH16 and RH96 von Sartorius

Effiziente Proteinanalyse im Hochdurchsatz zur Prozessoptimierung und Herstellungskontrolle

Markierungsfreie Protein-Quantifizierung und Charakterisierung von Protein-Protein Wechselwirkungen

Proteinanalysatoren
Octet SF3

Octet SF3 von Sartorius

Molekulare Bindungskinetik und Affinität mit einer einzigen dynamischen SPR-Injektion

Die Kurvenkrümmung ist der Schlüssel akkurater biomolekularer Wechselwirkungsanalyse

Thermo Scientific Gallery Enzyme Master Enzyme Analyzer

Thermo Scientific Gallery Enzyme Master Enzyme Analyzer von Thermo Fisher Scientific

Effiziente Handhabung von Enzymassays und Messbedingungen für konsistente und zuverlässige Leistung

Automatisieren Sie Enzymaktivität, Enzymassay und Enzymkinetik –bis zu 350 Proben pro Stunde

Diskreter Analysator
Amersham ImageQuant 800

Amersham ImageQuant 800 von Cytiva

Gele und Blots dokumentieren leicht gemacht dank hochempfindlichem CCD-Bildgerät

Holen Sie das Beste aus Ihren Bildern von Chemilumineszenz über Fluoreszenz bis Kolorimetrie

Gel-Dokumentations-Systeme
Octet R2 / Octet R4 / Octet R8

Octet R2 / Octet R4 / Octet R8 von Sartorius

Vollgas auf 2, 4 oder 8 Kanälen: Molekulare Wechselwirkungen markierungsfrei in Echtzeit analysieren

Innovative markierungsfreie Echtzeit-Quantifizierung, Bindungskinetik und schnelle Screening-Assays

Proteinanalysatoren
Ampha X30

Ampha X30 von Amphasys

Ampha X30 Single-Cell Analyzer: für die schnelle und genaue Zellanalyse

Effiziente Zellanalyse von Vitalität, Anzahl und Zustand ohne Färbung, Marker und Inkubation

Zellanalysatoren
Stopped Flow Systeme

Stopped Flow Systeme von Bio-Logic Science Instruments

50 µl ist alles, was Sie für eine Reihe von Stopped-Flow-Experimenten benötigen

Eine einzigartige Mikrovolumen-Stopped-Flow-Lösung für die anspruchsvollsten Anwendungen

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Diagnostik

Die Diagnostik ist das Herzstück der modernen Medizin und bildet in der Biotech- und Pharmabranche eine entscheidende Schnittstelle zwischen Forschung und Patientenversorgung. Sie ermöglicht nicht nur die frühzeitige Erkennung und Überwachung von Krankheiten, sondern spielt auch eine zentrale Rolle bei der individualisierten Medizin, indem sie gezielte Therapien basierend auf der genetischen und molekularen Signatur eines Individuums ermöglicht.

Themenwelt anzeigen
Themenwelt Diagnostik

Themenwelt Diagnostik

Die Diagnostik ist das Herzstück der modernen Medizin und bildet in der Biotech- und Pharmabranche eine entscheidende Schnittstelle zwischen Forschung und Patientenversorgung. Sie ermöglicht nicht nur die frühzeitige Erkennung und Überwachung von Krankheiten, sondern spielt auch eine zentrale Rolle bei der individualisierten Medizin, indem sie gezielte Therapien basierend auf der genetischen und molekularen Signatur eines Individuums ermöglicht.