Magnetfeldmessung am menschlichen Herzen mit kleinen Sensoren bei Raumtemperatur
Kooperationsprojekt von PTB und ihrem amerikanischen Partnerinstitut NIST macht den Weg frei für einfachere und preiswertere Diagnosemethoden
Bisher hieß es: kühlen, was das Zeug hält! Denn erst bei -269 Grad Celsius arbeiten SQUIDs optimal und können ihren Zweck erfüllen, nämlich feinste Magnetfelder messen. SQUIDs, supraleitende Quanteninterferometer, waren bisher die am besten geeigneten Sensoren, um die winzigen magnetischen Felder, die bei der elektrischen Aktivität des menschlichen Herzens entstehen, zu erfassen. Mit ihnen lässt sich ein Magnetokardiogramm (MKG) erstellen, das ein herkömmliches Elektrokardiogramm (EKG) zumindest gut ergänzen kann. (Dasselbe gilt für ein Magnetoenzephalogramm, MEG, und die Magnetfelder des Gehirns.) Doch für den Einsatz der SQUIDs braucht man gut geschirmte Räume und aufwendige Kühlsysteme. Letzteres könnte in Zukunft wegfallen, sollte das vom NIST entwickelte optische Magnetometer auch weiterhin die Erwartungen erfüllen.
Der Sensor ist ein Nebenprodukt der Entwicklung miniaturisierter Atomuhren, eines aktuellen Forschungsschwerpunktes am NIST. Weil aber biomagnetische Forschung am NIST kaum etabliert ist, wandten sich die Wissenschaftler an die Kollegen der PTB in Berlin. Die PTB ist eines von wenigen metrologischen Staatsinstituten weltweit, die sich in größerem Umfang der biomedizinischen Forschung widmen. Neben der guten Ausstattung wie dem magnetisch geschirmten Raum (BMSR-2) hatte sie - im Gegensatz zum NIST - auch die Erfahrung, den neuen Sensor am Menschen zu erproben.
Mit dem optischen Magnetometer maßen die PTB-Experten das Magnetfeld des menschlichen Herzens und die Relaxation von magnetischen Nanopartikeln. Beides sind Messungen, die routinemäßig im Labor üblicherweise mit SQUIDs durchgeführt werden. Ein besonderer Kniff zur Beurteilung der Qualität des optischen Sensors war die gleichzeitige Aufzeichnung der Herz- und Relaxationssignale mit dem im BMSR-2 installierten Multikanal-SQUID-Magnetometer.
Die Qualität der gewonnenen Daten belegt eindrucksvoll die Eignung der optischen Magnetometer im Pikotesla-Bereich. Somit sind sie für die Magnetfeldmessung am Herzen geeignet. Für Messungen am Gehirn müssen sie allerdings noch weiterentwickelt werden. Im Vergleich zu SQUIDs zeigten die optischen Sensoren erwartungsgemäß ein deutlich höheres Rauschniveau. Der entscheidende Vorteil dieser Sensoren liegt aber in ihrer kleinen Bauform (< 1 cm3), die es möglich macht, sie flexibel in geringem Abstand von der Quelle des Magnetfeldes anzubringen, um so beispielsweise die Signalstärke zu erhöhen. Auch der Betrieb des Sensors bei Raumtemperatur macht seinen Einsatz unkompliziert im Vergleich zu anderen Sensortypen für diesen Messbereich. Seine Herstellung durch Mikrosystemtechnik ermöglicht eine einfache und kostengünstige Massenproduktion. Das NIST plant den Bau eines Mehrkanal-Systems auf Basis der vorhandenen Technologie. Weitere Tests dieser Sensoren in der PTB sind geplant.