Die Welt der kleinen RNAs: Neue Regulierungsprozesse in den einzelligen Archaeen entdeckt

09.12.2009 - Deutschland

Wissenschaftler der Kieler Universität haben in Zusammenarbeit mit dem Berliner Max-Planck-Institut für Infektionsbiologie herausgefunden, wie kleine regulatorische RNAs (Ribonukleinsäuren) in Methan-produzierenden Einzellern funktionieren. In der Zeitschrift Proceedings of the National Academy of Sciences gibt Professorin Ruth Schmitz-Streit, Institut für Allgemeine Mirkobiologie der Christian-Albrechts-Universität (CAU), erste Anhaltspunkte, welchen Einfluss kurze Ribonukleinsäureketten in Stresssituationen auf die zellulären Prozesse haben.

Copyright: Gerhard Gottschalk, Georg-August-Universität Göttingen

Eine Aufnahme des Archaeons Methanosarcina mazei unter dem Lichtmikroskop (links) und unter dem Fluoreszenzmikroskop (rechts) zeigt, dass die Organismen nach der Zellteilung häufig in Gruppen zusammengelagert bleiben.

Gegenstand ihrer Untersuchungen ist die Gruppe der Archaeen. Dies sind einzellige Organismen, die keinen Zellkern besitzen und unter extremen Milieubedingungen, wie beispielsweise in sauerstofflosen Umgebungen, wachsen. Da es sich um Methan- und CO2-produzierende Zellen handelt, spielen sie eine wichtige Rolle im Ökosystem der Erde. Darüber hinaus sind sie für die Gewinnung von Biogas essentiell. Die Grundlagenforschung von Schmitz-Streit ermöglicht daher ein immer besseres Verständnis unserer Umwelt und ihrer Ressourcen.

In der von der Deutschen Forschungsgemeinschaft (DFG) geförderten Studie konzentrieren sich Schmitz-Streit und ihr Doktorand Dominik Jäger sowie Dr. Claudia Ehlers (ebenfalls CAU) auf das exemplarische Archaeon Methanosarcina mazei. In der mikroskopisch kleinen Zelle haben sie Prozesse entdeckt, die von der Stickstoffkonzentration außerhalb der Zelle abhängig sind und von kleinen RNAs gesteuert werden. Kleine regulatorische RNAs sind kurze, einsträngige Spiralen, denen in der Gruppe der Archaeen bislang keine eigenständige Funktion zugeordnet wurde. Zu den bisher bekannten Aufgaben von RNAs zählen, dass sie zum einen als Botenstoff für Erbinformationen fungieren (messanger-RNA), zum anderen die Umsetzung des genetischen Materials in Proteine ermöglichen (Translation durch ribosomale RNA und transfer-RNA).

Schmitz-Streit und Jäger konnten nun unter Anwendung einer neu entwickelten Methode eine Art Lageplan des Zellzustandes (Transkriptionskarte) erstellen. Durch Veränderungen der Stickstoffkonzentration wurde der Organismus in künstliche Stresssituationen versetzt. Unter diesen Bedingungen haben sich Abweichungen in der Struktur der Zelle gezeigt, die auf eine regulierende Wirkung der kleinen RNAs hindeuten. Das bedeutet, dass kleine RNAs in Interaktion mit einigen messanger-RNAs treten und hierdurch bei Stickstoffmangel die Umsetzung in Proteine stimulieren. Indem sie zwischen den Prozessen der Transkription und Translation eingreifen und die Proteinproduktion beeinflussen, steuern die kleinen RNAs indirekt die Aufgaben der Zelleiweiße. So kontrollieren sie auch den genetischen Informationsaustausch, der durch so genannte Transposons ("springende Gene") erfolgt, ein Prozess, der durch ein Protein (Transposase) ermöglicht wird.

Bei der Übertragung von Erbgut unterscheidet man zwischen dem vertikalen Gentransfer, der während der Fortpflanzung erfolgt, und dem horizontalen Gentransfer, bei dem ein oder mehrere Gene mithilfe von Transposons von einer Zelle zur nächsten gelangen. Diese Prozesse zu verstehen hilft, die Veränderungen im Ökosystem der Erde nachvollziehen zu können. Ein erster Schritt für die Gruppe der Archaeen ist nun durch die Studie der Kieler und Berliner Wissenschaftler getan. "Es ist ganz wichtig zu wissen, dass Archaeen nach der Transkription regulierend eingreifen können", so Schmitz-Streit. "Diese Erkenntnis können wir nutzen, um die Untersuchungen auf im Menschen vorkommenden Archaeen auszuweiten und mehr über den horizontalen Gentransfer zu lernen."

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller