Oberflächenrezeptoren feuern auch im Zellinneren

Forscher vom Rudolf-Virchow-Zentrum klären grundlegenden Mechanismus auf

20.08.2009 - Deutschland

Oberflächenrezeptoren leiten nicht nur Signale von außen in die Zelle, sondern können auch in der Zelle selbst aktiv sein. Das zeigen Würzburger Forscher vom Rudolf-Virchow-Zentrum in der online Fachzeitschrift PLoS Biology und stellen damit die bisherige Lehrbuchmeinung auf den Kopf. Die untersuchten Rezeptoren gehören zur wichtigsten Klasse von Oberflächenrezeptoren im menschlichen Körper und sind in eine Vielzahl physiologischer Prozesse sowie der Entstehung von Krankheiten involviert. G-Protein-gekoppelte Rezeptoren sitzen in der Zellmembran und leiten Licht-, Geruchs- und Geschmacksreize von außen in die Zelle weiter. Darüber hinaus spielen sie nicht nur bei der Zellbewegung, dem Zellwachstum oder der Zelldifferenzierung eine wichtige Rolle, sondern sind auch Angriffspunkt von Hormonen wie Adrenalin, oder von Neurotransmittern wie Acetylcholin. G-Protein-gekoppelte Rezeptoren sind also in die wichtigsten physiologischen Prozesse involviert. Das hat ihnen eine Schlüsselrolle bei der Entwicklung von Medikamenten zuteil kommen lassen. Ein Großteil der heutigen Medikamente greift an diesen Rezeptoren an, um Entzündungsprozesse, Allergien oder Erkrankungen wie Bluthochdruck oder Herzmuskelschwäche zu therapieren. Die bekanntesten sind Betablocker, Opioide oder Sympathomimetika.

Die Rezeptoren auf der Zelloberfläche leiten Signale von außen in die Zelle und aktivieren dort so genannte sekundäre Botenstoffe, die eigentlichen Reaktionsauslöser. Werden die Rezeptoren länger gereizt, so führt das dazu, dass sie in das Zellinnere transportiert werden und von der Oberfläche verschwinden. Wissenschaftler vermuteten bisher, dass, einmal im Inneren angelangt, der Rezeptor inaktiv wird und keine Botenstoffe mehr aktivieren kann. Sie nahmen an, dass dahinter eine Art Abschaltmechanismus, bzw. eine Maßnahme um den Rezeptor im Inneren wieder zu recyceln steckt. Andere beobachteten allerdings für verwandte Rezeptoren, dass diese in der Zelle weiter aktiv bleiben. Ein Beispiel ist der epidermale Wachstumsfaktor-Rezeptor, der das Zellwachstum beeinflusst und bei Fehlregulation Krebs auslösen kann.

Ob diese G-Protein gekoppelten Rezeptoren im Zellinneren noch funktionieren oder nicht, ist hinsichtlich der gezielten Wirkung von Medikamenten eine essentielle Frage. Die Forscher um Dr. Davide Calebiro, Dr. Viacheslav Nikolaev und Prof. Dr. Martin Lohse vom Rudolf-Virchow-Zentrum und Kollegen der Universitäten Mailand und Genua untersuchten dazu den TSH-Rezeptor, ein G-Protein-gekoppelter Rezeptor in Schilddrüsenfollikeln von Mäusen. Die Follikel sind kleine Bläschen im Schilddrüsengewebe, die kreisförmig angeordnete Epithelzellen besitzen und Schilddrüsenhormone produzieren. Schilddrüsenfollikel können im Labor gut gehalten werden und weisen alle natürlich vorkommenden Proteine und sekundäre Botenstoffe auf, die im lebenden Organismus vorhanden sind und der TSH-Rezeptor zur Weiterleitung braucht.

Davide Calebiro nutzte für seine Messungen einen fluoreszierenden Sensor für die sekundären Botenstoffe. In den aus der Maus isolierten Schilddrüsenfollikel kann er damit unter dem Mikroskop farblich verfolgen, ob der Rezeptor ein Signal an die sekundären Botenstoffe weitergibt. Um den Rezeptor zu stimulieren, ist das Thyreoidea-stimulierende Hormon (TSH) nötig, das die Schilddrüsenhormonproduktion anregt und bei Fehlregulation zur Unter- oder Überfunktion der Schilddrüse führt. Wie erwartet tritt nach einer Zugabe des Hormons eine Verfärbung der Follikel auf. Der Rezeptor ist aktiv und gibt das Signal an die sekundären Botenstoffe weiter. Eine anhaltende Gabe des Hormons führt dazu, dass der Rezeptor in die Zelle transportiert wird. Auch das lässt sich im Mikroskop farblich darstellen. Das Besondere jedoch: Ist der Rezeptor in der Zelle, zeigt der Sensor immer noch die gleiche Farbintensität wie vorher. Das Signal des sekundären Botenstoffs bricht also nicht ab, der Rezeptor feuert auch im Zellinneren. Wird der Transport des Rezeptors ins Zellinnere blockiert, so nimmt das Signal des sekundären Botenstoffs ab.

"Das lässt vermuten, dass das klassische Paradigma von einem Signal ausschließlich von der Zelloberfläche einer Revision bedarf. Der Rezeptor scheint sowohl von der Oberfläche als auch vom Inneren zu funktionieren. Das hat zur Folge, dass das Signal noch länger anhält als bisher beobachtet. Es scheint allerdings, dass die Konsequenzen für die Zelle unterschiedlich sind", sagt Martin Lohse vom Rudolf-Virchow-Zentrum. Schon länger beobachtet man, dass gleiche biologische Signalwege genutzt werden, um unterschiedliche Reaktionen in der Zelle auszulösen. Die Forscher nehmen an, dass es darauf ankommt, woher das Signal kommt. Ist der Rezeptor einmal in der Zelle angelangt, kann er über den gleichen Weg andere Zellbestandteile erreichen, wie beispielsweise den Zellkern, und ganz unterschiedliche, vielleicht sogar gegenteilige Reaktionen auslösen. Auch für den untersuchten TSH-Rezeptor konnten die Wissenschaftler einen festen Ort in einem Kompartiment nahe dem Golgi-Apparat der Zelle ausmachen. Die Ergebnisse zeigen, dass Oberflächenrezeptoren viel komplizierter funktionieren als bisher angenommen.

"Wir müssen jetzt genauer untersuchen, ob dieser Transport auch bei anderen G-Protein-gekoppelten Rezeptoren mit einem stetigen Signal in der Zelle einhergeht. Nicht nur der TSH-Rezeptor, der bei verschiedenen Schilddrüsen-Erkrankungen eine Rolle spielt, sondern auch andere dieser Rezeptoren sind sehr interessant", so Martin Lohse über die weitere Forschung. Ist dies ein genereller Mechanismus, so könne gezielt der Transport ins Zellinnere blockiert werden - und dies wäre ein ganz neuer pharmakologischer Ansatz für eine Vielzahl von Erkrankungen.

Originalveröffentlichung: Calebiro D et al.; "Persistent cAMP-Signals Triggered by Internalized G-Protein-Coupled Receptors"; PLoS Biol 2009, 7(8): e1000172

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...