Forschung für den kurzen Atem: Neues Enzym reguliert Genaktivität abhängig von Sauerstoff
"Damit scheint klar, dass der Sauerstoffgehalt alle Ebenen der Genaktivität beeinflussen kann", sagt Böttger. "Wir wollen nun klären, wie ein Sauerstoffmangel die genetische Aktivität verändert und warum Tumorzellen so viel stärker auf diese Extremsituation reagieren als normale Zellen."
Sauerstoff ist eine wesentliche Energiequelle für alle Tiere - und auch für den Menschen. Weil vor allem die Zellen so empfindlich auf einen Sauerstoffmangel - eine Hypoxie - reagieren, haben sich verschiedene Mechanismen entwickelt, die den Gehalt an Sauerstoff messen und darauf antworten. Auf den Sauerstoffmangel in großen Höhen etwa reagiert der Körper mit einer verstärkten Produktion von roten Blutkörperchen, weil diese den Sauerstoff im Blut transportieren. Oxygenasen dagegen hängen Sauerstoffatome direkt an Proteine. Die Zugabe von Sauerstoffatomen wiederum reguliert die Funktion von Proteinen - abhängig von Schwankungen des Sauerstoffgehalts in der Umgebung. Denn wenn wenig Sauerstoff vorhanden ist, arbeiten die Oxygenasen schlechter.
Zudem aber beeinflussen manche Oxygenasen, welche Gene bei Sauerstoffmangel aktiv werden. Wird ein Gen aktiv, erfolgt zunächst eine Abschrift in eine mRNA. Dieses Molekül wird in mehreren Schritten modifiziert, so dass dieses mRNA-Spleißen zu unterschiedlichen Endprodukten führen kann. Dann stammen verschiedene Proteine von einer einzigen genetischen Information ab. In ihrer aktuellen Studie identifizierten die Forscher ein neues Enzym, die Oxygenase Jmjd6, die auch eine wichtige Rolle beim mRNA-Spleißen spielt.
"Weil es sich um eine Oxygenase handelt, scheint jetzt sehr wahrscheinlich, dass über den Sauerstoffgehalt alle Schritte der Genaktivität beeinflusst werden können", sagt Böttger. "Wir wollen jetzt herausfinden, wie sich die gesamte genetische Aktivität unter verschiedenen Bedingungen ändert, wenn gleichzeitig Sauerstoffmangel herrscht. Interessant ist in diesem Zusammenhang auch, dass Krebszellen ganz besonders empfindlich auf Sauerstoffmangel reagieren und in Tumoren häufig Hypoxie-induzierte Proteine aktiv sind. "Frühere Arbeiten haben gezeigt, dass Oxygenasen bestimmen, welche Gene aktiviert werden. Jetzt stellen wir fest, dass sie auch dafür sorgen, in welcher Form die Proteine gebildet werden, die in unserem Körper existieren, ob diese nun für eine Herz- oder eine Krebszelle bestimmt sind", meint Schofield.
Originalveröffentlichung: Celia J. Webby et al.; "Jmjd6 catalyses Lysyl-hydroxylation of U2AF65 - a protein associated with RNA splicing"; Science online, 3. Juli 2009
Meistgelesene News
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Antibody Stabilizer von CANDOR Bioscience
Protein- und Antikörperstabilisierung leicht gemacht
Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz
DynaPro NanoStar II von Wyatt Technology
NanoStar II: DLS und SLS mit Touch-Bedienung
Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.