Cell-free protein production
New way to produce critical proteins for medicine and industry sidesteps use of live cells
Current methods employ vats of genetically modified bacteria or mammalian cells that churn out proteins for such pharmaceuticals as insulin or human growth hormone. But there are many proteins that bacteria or cells cannot tolerate. Anti-microbials, for example, are meant to kill bacteria and so would kill the host. And many key proteins that are important in regulating the normal life of a cell would also kill the host if overproduced inside a cell.
Researchers have tried mixing DNA that codes for the desired protein with the amino acids from which proteins are made along with ribosomes and other helper chemicals in a test tube. Cornell's faster, more efficient process weaves the coding DNA into an artificial gel made of synthetic DNA. The process is described in the journal Nature Materials by Dan Luo, Cornell associate professor of biological and environmental engineering, and colleagues.
Luo's group has pioneered the use of synthetic DNA as a self-assembling construction material. Strands of DNA that are designed to be complementary over a small part of their length can join together into various shapes. In this application they form crosses, which in turn link at their ends to form a 3-D matrix. This makes a hydrogel, a spongy material that absorbs water without dissolving in the water.
To make a protein-producing gel, which Luo calls a P-gel, the synthetic DNA is also made to include sequences that join to the ends of plasmids - strands of DNA that code for the desired protein. A mix of X-shaped and plasmid DNA then assembles into a gel with genes coding for the desired protein integrated throughout. To increase the surface area for reaction, tiny drops of the P-gel are molded into pads about 1 millimeter square by 20 microns thick. Several hundred pads are then placed in a solution of amino acids and protein-making machinery extracted from living cells.
The result, Luo reports, is to produce proteins up to 300 times more efficiently than when the same reactions are carried out with DNA floating freely in the same solution. The system has so far been tested with 16 proteins, including several that are toxic or would otherwise be impossible to make in living cells.
Workers in Luo's lab have spent nearly a year trying variations of the process to find out why it works so well and suggest several reasons: Genes locked into the hydrogel are protected from damage they might suffer when floating free; much more DNA can be packed into the P-gels than can be dissolved in a given amount of solution; and because the genes are close together, enzymes taking part in the transcription process remain close by and can perform more quickly.
Most read news
Topics
Organizations
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.