Weill Cornell, Ithaca researchers use cotton candy to create new bloodflow routes
Currently, engineered tissues are used to take the place of damaged tissue due to injury, burns or from surgical procedures. However, they are limited in size and often die from a lack of blood supply that provides life-giving nutrients.
"For decades, the lack of a suitable blood supply has been the major limitation of tissue engineering," said Dr. Jason Spector, a plastic surgeon at NewYork-Presbyterian/Weill Cornell and assistant professor at Weill Cornell Medical College. "Without a network of blood vessels, only small, thin swaths of engineered tissue have longevity in the body."
Using crystalline sugar, scientists created a network of tiny tubes to act as tunnels, capable of shuttling nutrition-rich blood between the body's natural tissue and an artificial graft. To create the sugar fibers, researchers at the Cornell Nanobiotechnology Center (NBTC) used a common cotton candy machine. A polymer was then poured over the fibers. Once hardened, the implant was soaked in warm water, dissolving the sugars and leaving behind a web of three-dimensional hollow micro-channels.
The study is in early stages and not yet approved for clinical use. However, promising early findings show that the novel method infuses implants with life-giving blood. The goal is to allow development of larger and more complex implants, fed by a person's own circulatory system.
Most read news
Organizations
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.