Common epilepsy drug could prevent and treat Alzheimer's disease

28-Oct-2008 - Canada

The team led by UBC psychiatry Prof. Weihong Song, who is also the Jack Brown and Family Professor and Chair in Alzheimer's disease at UBC, found that if Valproic Acid (VPA) is used as a treatment in early stages of AD memory deficit is reversed.

The study, published in the Journal of Experimental Medicine, reveals that VPA works by inhibiting the activity of an enzyme that produces a neurotoxic protein called beta Amyloid. In doing so, plaque formation is discontinued. Amyloid beta-proteins are the central component of neurotoxic plaques in AD.

"We found that if we used VPA in the early stage of Alzheimer's disease, in model mice, it reduced plaque formation and further prevented brain cell death and axon damage," says Song, who is a Canada Research Chair in Alzheimer's disease and Director of the Townsend Family Laboratories in UBC's Faculty of Medicine. "The drug also improved performance in memory tests."

The results will help inform the design of human clinical trials because researchers now understand the mechanisms and pathology of VPA in AD animal models.

"We are very excited about these results because we now know when VPA should be administered to be most effective and we now know how VPA is working to prevent AD," says Song, who is also a member of the Brain Research Centre at UBC and VCHRI. "A small human clinical trial is currently underway and we expect results to be available in the next year."

Other news from the department science

These products might interest you

Systec H-Series

Systec H-Series by Systec

Safe, reproducible and validatable sterilization of liquids, solids and waste

Autoclaves with 65-1580 liters usable space, flexibly expandable for various applications

laboratory autoclaves
Whatman™ folded filter papers

Whatman™ folded filter papers by Cytiva

Whatman folded filter papers

Convenient folded formats speed up your sample preparation

filter papers
Loading...

Most read news

More news from our other portals

So close that even
molecules turn red...