Researchers describe for first time how some bacteria kill males: They first invade the mother
Arsenophonus inhibits the ability of male eggs to develop normally into embryos by infecting mother wasps. "Arsenophonus resides in the tissues around the developing eggs in the infected mother but not in the egg itself, so the bacteria likely secrete an unknown substance that penetrates the eggs to affect embryonic development," said Ferree. The result of the infection is that the mother wasps have broods with many more females than males.
Unlike previously described mechanisms that explain sex-ratio imbalances in other insect species, Arsenophonus targets small cellular organelles called centrosomes in the developing male wasps. Centrosomes help direct mitosis, which is critical for development and involves the coordinated segregation of chromosomes into new cells.
But why are only males vulnerable to Arsenophonus? Female Nasonia develop from eggs that are fertilized by sperm. The females, therefore, have centrosomes from their mother as well as their father's sperm. Males, on the other hand, develop from unfertilized eggs and therefore do not have any sperm-derived centrosomes - Arsenophonus has evolved to be able to destroy the egg-derived centrosomes, rendering male embryos incapable of developing. The sperm-donated centrosomes in the female wasp embryos, however, are not vulnerable to Arsenophonus infection.
"This is an example of a sex-ratio distorter that has taken advantage of a specific type of host reproductive machinery," Ferree said. "They have gone in and exploited whatever sex difference they can - which in this case is the use of these egg-derived centrosomes.
"Male killing is advantageous for the bacteria because they are only transmitted through female wasps - and it is believed that this helps the females to have more resources and, ultimately, propagate more bacteria."
The research, said Ferree, has implications for better understanding host-pathogen interactions and, developmentally, how these special egg-derived centrosomes are formed. "No one had previously knocked out egg-derived centrosomes to see what the effect was, and I think these bacteria are the first to perform that experiment," Ferree said. "Given the variety of arthropods in the world, it is fascinating to imagine how many more types of bacterial reproductive mechanisms are out there."Health.
Most read news
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.