Scientists aim for green production of medications via cell engineering
Rice University researchers would speed process, cut costs
The industrial technology project is the continuation of a long-time collaboration between Ka-Yiu San, the E.D. Butcher Professor in Bioengineering, and George Bennett, the E. D. Butcher Professor of Biochemistry and Cell Biology. "Our group is one of the very first targeting what we call cofactor engineering," said San. A cofactor is a chemical compound that acts as a helper in the process of biochemical transformation.
In this case, San and Bennett are using modified E. coli cells in a reaction that will continually replenish the supply of the cofactor known as NAPDH (Nicotinamide Adenine Dinucleotide Phosphate). NAPDH is critical to forming molecules, known as chiral compounds, which can act as pharmaceutical agents in ways that are most specific to the desired target in the body.
In their research, San and Bennett set up a biochemical reaction that continually strips hydrogen from a glucose molecule, adding it to NADP inside the metabolically engineered E. coli. "In a chemical factory, they basically use hydrogen gas and metal to perform a reaction," said Bennett. But in a biological system, enzymes are the workhorses that carry out the process, acting as catalysts to produce pure chiral molecules that can be tailored for specific uses, he said. Their research aims to significantly enhance the availability of NADPH, simplifying the manufacture of the chiral compound, said San.
"This is not only useful for medical compounds, but also for other biochemicals and biofuels," said San, noting that patents for the process are in the works.
Most read news
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.