Cornell researchers study bacterium big enough to see
The secret to an unusual bacterium's massive size - it's the size of a grain of salt, or a million times bigger than E. coli bacteria, and big enough to see with the naked eye - may be found in its ability to copy its genome tens of thousands of times. That's according to Cornell research published in Proceedings of the National Academy of Sciences.
This giant among bacteria, Epulopiscium sp., lives in a symbiotic relationship in the gut of surgeonfish around Australia's Great Barrier Reef. The research shows how a simple modification in the basic design of bacterial cells allows Epulopiscium sp. to grow so large.
"Other bacteria have multiple copies of their genome, but prior to this, I think the highest numbers known have been a hundred or a few hundred copies," said Esther Angert, a Cornell associate professor of microbiology and the paper's senior author. "The big discovery is seeing this bacterium with tens of thousands of copies of its genome."
Most bacteria are small and appear to be structurally simple. They lack the specialized organelles that allow eukaryotic cells (cells in which DNA is contained within a nucleus) to take in nutrients, organize cellular functions and maintain larger sizes. Bacteria instead rely on diffusion through their cell membranes to obtain nutrients and other important chemicals. Since bacteria cannot move nutrients within the cell body, they need to stay small for diffusion to work well.
But, by copying its genome thousands of times and arraying it in a kind of fabric just under the cell membrane, Epulopiscium sp. may maintain its large size by keeping its DNA close to the outer surface, Angert said. That way, the DNA may respond quickly and locally to stimuli by producing RNA and proteins where they are needed.
"Having copies of its genome arrayed around the periphery keeps the DNA close to the outer environment," said Angert. "The bacterium can immediately react as something comes in contact with the cell."
The bacterium's large size offers advantages: It is highly mobile and too big to eat for most protozoan predators that also live in the surgeonfish's gut.
Also, while most bacteria reproduce by dividing into two equal-sized offspring, Epulopiscium sp. produces offspring internally, usually two, one at each pole of the cigar-shaped cell. These polar cells grow within the mother cell's cytoplasm, until the mother cell eventually bursts open and dies.
"We're interested in how that process arose and how that may affect the biology of the organism," said Angert.
Other news from the department science
These products might interest you

Hydrosart® Ultrafilter by Sartorius
Efficient ultrafiltration for biotech and pharma
Maximum flow rates and minimum protein loss with Hydrosart® membranes

Hydrosart® Microfilter by Sartorius
Hydrophilic microfilters for bioprocesses
Minimal protein adsorption and high flow rates

Sartopore® Platinum by Sartorius
Efficient filtration with minimal protein adsorption
Reduces rinsing volume by 95 % and offers 1 m² filtration area per 10"

Polyethersulfone Ultrafilter by Sartorius
Reliable filtration with PESU membranes
Perfect for biotechnology and pharmaceuticals, withstands sterilisation and high temperatures

Polyethersulfone Microfilter by Sartorius
Biotechnological filtration made easy
Highly stable 0.1 µm PESU membranes for maximum efficiency

Sartobind® Rapid A by Sartorius
Efficient chromatography with disposable membranes
Increase productivity and reduce costs with fast cycle times

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
More news from our other portals
Last viewed contents
Keith Powell hands over to John Burt to lead PolyTherics
Category:Australian_medical_associations
Osmetech licenses VKOR pharmacogenetic marker for warfarin dosage management from University of Washington
Category:Medical_researchers_by_nationality
Sex_linkage
Evogene and Biogemma enter collaboration to develop drought tolerant corn
Eurofins expands its presence in India

Hudson Robotics, Inc - Springfield, USA
Mullerian_agenesis

Lactate for Brain Energy
List_of_subjects_in_Gray's_Anatomy:_Alphabetical:_F
