Progress toward a targeted therapy for a specific form of leukemia
T-ALL is a certain form of leukemia in which immature T-cells (a specific type of blood cells) build up very rapidly. T-ALL is the most prevalent form of cancer in children under 14 years of age, striking children between the ages of 2 and 3 in particular. Today, with optimal treatment using chemotherapy, more than half of the children are cured.
The search for the mechanisms that cause T-ALL goes on ceaselessly. Discovering these mechanisms shall enable the development of targeted therapies, which are preferred over chemotherapy. Scientists know that T-ALL arises only when defects occur in several genes simultaneously. So it is not only important to identify the genes that underlie T-ALL, but also to discover which combinations trigger the disease. This is an important step in the development of specific combination therapies, which are much more effective than therapies that focus on just one target.
Idoya Lahortiga and Jan Cools in Peter Marynen's group, working with colleagues from Ghent (Belgium) and Rotterdam (the Netherlands), have recently identified MYB as a major player in certain T-ALL cases. Studying the DNA of 107 patients, they found that the MYB gene was duplicated in 9 of them. This duplication results in increased MYB concentrations. The MYB transcription factor is important for the proliferation, survival and differentiation of the precursor cells that precede the formation of blood cells. Scientists also know that MYB is involved in several other forms of cancer.
The researchers are convinced that MYB can be an important target for the development of a new therapy for T-ALL. They are particularly encouraged by the results they obtained when they suppressed the expression of MYB in T-ALL cell lines. This produced a limited but therapeutically significant effect on the cancer cells.
They also obtained a much more significant effect by suppressing two genes at the same time: MYB and NOTCH1. NOTCH1 has recently been identified as an important factor in the development of nearly 70% of T-ALL cases. The effect of inhibiting NOTCH1 is currently being tested on T-ALL patients. This is going very well, but the NOTCH1 inhibitors turn out to have toxic side effects, whereby some patients have to stop the treatment. The results from the VIB researchers in Leuven now demonstrate that the combined inhibition of NOTCH1 and MYB in T-ALL cell lines is very effective. These results raise hopes that scientists will be able to develop a very effective combination therapy in which the concentration of the toxic NOTCH1 inhibitors is reduced for the group of patients in which MYB and NOTCH1 play a role. The quest for this therapy will also be a part of the further research efforts of Lahortiga, Cools and Marynen.
Original publication: Lahortiga et al., "Duplication of the MYB oncogene in T-cell acute lymphoblastic leukemia"; Nature Genetics, 2007.
Most read news
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.