Bacteria-based nanoclusters
To produce nanoparticles out of the noble metal palladium a team of biologists from the Forschungszentrum Rossendorf (FZR) in Dresden use the surface protein layer (S-layer) of one bacterium. Through this layer the bacterium "Bacillus sphaericus JG-A12" is able to survive in the extreme environment of a uranium mining waste pile. The biologists discovered this bacterium in 1997 and have since been able to cultivate it in the laboratory of the FZR. Its S-layer is very regularly structured with pores of identical size on the nanometer scale. On this grid-like matrix the biologists applied a metallic salt of palladium ions to investigate the metal-protein interactions and their impact on the secondary structure.
Within the pores of the S-layer the metallic salt is transformed into the noble metal palladium by the use of hydrogen. The result are nanoclusters of metallic palladium, each comprising of 50 to 80 atoms, which are regularly arranged on the surface layer. This combined metal-protein layer shows new physical and chemical effects. Because the metal stabilizes the protein and vice versus the S-layer stays stable to higher temperatures or even in an acidic environment. In relation to their size the nanoclusters possess many atoms on the surface where other substances can bind. Today, the noble metal palladium is often used as a catalyst, i.e. in the chemical industry or in cars. Nano-catalysts made from palladium promise to accelerate chemical reactions even at low temperatures. A few laboratories are already producing and testing this new technology.
Scientists of the FZR, however, have taken a step further. They are aiming at producing innovative nano-catalysts out of a noble metal like gold or to model the size of the metallic nanoclusters. This could lead to more efficient nano-catalysts or to completely new fields of application. For the first time they exactly characterized the bonding between the metal and the S-layer protein of "Bacillus sphaericus JG-A12". Hereby, the prerequisite is given to manipulate this protein by means of genetic engineering enabling the scientists to construct materials with new optic, magnetic, catalytic, and other novel physical properties.
Original publication: K. Fahmy, M. Merroun, K. Pollmann, J. Raff, O. Savchuk, C. Hennig, S. Selenska-Pobell; "Secondary structure and Pd(II) coordination in S-layer proteins from Bacillus sphaericus studied by infrared and X-ray absorption spectroscopy"; Biophysical Journal 2006.
Most read news
Other news from the department science
These products might interest you
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
DynaPro Plate Reader III by Wyatt Technology
Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)
Efficiently characterize your sample quality and stability from lead discovery to quality control
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.