Marijuana's Active Ingredient Shown to Inhibit Primary Marker of Alzheimer's Disease

Discovery Could Lead to More Effective Treatments

14-Aug-2006

Scientists at The Scripps Research Institute have found that the active ingredient in marijuana, tetrahydrocannabinol or THC, inhibits the formation of amyloid plaque, the primary pathological marker for Alzheimer's disease. In fact, the study said, THC is "a considerably superior inhibitor of [amyloid plaque] aggregation" to several currently approved drugs for treating the disease.

According to the new Scripps Research study (published Molecular Pharmaceutics), which used both computer modeling and biochemical assays, THC inhibits the enzyme acetylcholinesterase (AChE), which acts as a "molecular chaperone" to accelerate the formation of amyloid plaque in the brains of Alzheimer victims. Although experts disagree on whether the presence of beta-amyloid plaques in those areas critical to memory and cognition is a symptom or cause, it remains a significant hallmark of the disease. With its strong inhibitory abilities, the study said, THC "may provide an improved therapeutic for Alzheimer's disease" that would treat "both the symptoms and progression" of the disease.

"While we are certainly not advocating the use of illegal drugs, these findings offer convincing evidence that THC possesses remarkable inhibitory qualities, especially when compared to AChE inhibitors currently available to patients," said Kim Janda, Ph.D., who is Ely R. Callaway, Jr. Professor of Chemistry at Scripps Research, a member of The Skaggs Institute for Chemical Biology, and director of the Worm Institute of Research and Medicine. "In a test against propidium, one of the most effective inhibitors reported to date, THC blocked AChE-induced aggregation completely, while the propidium did not. Although our study is far from final, it does show that there is a previously unrecognized molecular mechanism through which THC may directly affect the progression of Alzheimer's disease."

Other news from the department science

Most read news

More news from our other portals

So close that even
molecules turn red...