Human embryonic stem cells display a unique pattern of chemical modification to DNA
Study suggests additional hurdles to therapeutic cloning may lie ahead
Embryonic stem cells are derived from embryos that are undergoing a period of intense cellular activity, including the chemical addition of methyl groups to specific DNA sequences in a process known as DNA methylation. The methylation and demethylation of particular DNA sequences in the genome are known to have profound effects on cellular behavior and differentiation. For example, DNA methylation is one of the critical epigenetic events leading to the inactivation of one X chromosome in female cells. Failure to establish a normal pattern of DNA methylation during embryogenesis can cause immunological deficiencies, mental retardation and other abnormalities such as Rett, Prader-Willi, Angelman and Beckwith-Wiedemann syndromes.
Until recently, DNA methylation could only be studied one gene at a time. But a new microarray-based technique developed at Illumina enabled the scientists conducting this new study to simultaneously examine hundreds of potential methylation sites, thereby revealing global patterns.
To examine global DNA methylation patterns in human embryonic stem cells, the researchers analyzed 14 human embryonic stem cell lines from diverse ethnic origins, derived in several different labs, and maintained for various times in culture. They tested over 1500 potential methylation sites in the DNA of these cells and in other cell types and found that the embryonic stem cells shared essentially identical methylation patterns in a large number of gene regions. Furthermore, these methylation patterns were distinct from those in adult stem cells, differentiated cells, and cancer cells.
"Our results suggest that therapeutic cloning of patient-specific human embryonic stem cells will be an enormous challenge, as nuclei from adult cells will have to be epigenetically reprogrammed to reflect the specific DNA methylation signature of normal human embryonic stem cells," explains Dr. Jeanne Loring, co-director of the stem cell center at BIMR. "This reinforces the need for basic research directed at understanding the fundamental biology of human embryonic stem cells before therapeutic uses can be considered."
Most read news
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.