Brookhaven Scientists Take "Snapshots" of Enzyme Action
Results advance understanding of how toxic compounds are eliminated from the body
According to Brookhaven biologists Eswaramoorthy Subramaniam, the lead author, and Subramanyam Swaminathan, who led the research, most non-nutritional, foreign substances such as drugs and industrial chemicals are insoluble in water. The body uses two main groups of enzymes - flavin-containing monooxygenases (FMOs) and cytochrome P450s - to convert these compounds to soluble forms that can be easily excreted.
"For FMOs, the end result - that an oxygen atom gets added to make these compounds soluble - is simple," Swaminathan says, "but the reactions require additional participants, or cofactors." In order to understand the molecular mechanism, the scientists used high-intensity x-ray beams at the National Synchrotron Light Source (NSLS) to identify the positions of individual atoms and produce crystal structures of the enzyme, the enzyme plus its cofactor, and the enzyme plus the cofactor plus the compound to be oxidized (the substrate).
"These crystal structures give step-by-step snapshots of different stages of the catalytic action," Swaminathan says, "and reveal a mechanism that is different from what had been known about this process."
Previously, it had been believed that all the "players" - the enzyme, cofactor and substrate - came together at a particular time to perform the function of transferring an oxygen atom from the enzyme to the substrate. "Our finding shows that the substrate and cofactor are binding to the enzyme alternately, not together," Swaminathan says.
First, the cofactor (known as NADPH) binds to a molecule known as FAD, which is a coenzyme attached to the FMO, and transfers a hydride ion to it. That makes the FAD group capable of accepting molecular oxygen. Then, when the substrate arrives, the cofactor leaves so that the substrate can bind to the same site on the FAD group. At this moment an oxygen atom from molecular oxygen is attached to the substrate, and the hydride ion obtained from the cofactor combines with the other oxygen atom to form a water molecule, which is released. Once the substrate is oxygenated, it leaves the enzyme and the cofactor binds again.
"With this back-and-forth, alternating binding, the process repeats over and over for continuous turnover of the product," Swaminathan says.
The details of this process may help scientists understand what happens in cases where compounds are not properly metabolized, and possibly develop corrective measures. One example is a condition called trimethylaminuria, also known as "fish odor syndrome," which results from defective FMOs. Affected individuals are unable to oxygenate trimethylamine, a byproduct of protein digestion released by bacteria living in the gut. People with the disorder release trimethylamine through breath, sweat, and urine, producing a fish-like odor that can be embarrassing and result in psychological effects such as withdrawal and depression.
People with defective FMOs might also suffer additional side effects from drugs, industrial compounds, or other chemicals
Topics
Organizations
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.