Study finds 65% of ovarian cancer cells sideline body¹s defences
Both mechanisms cause a signal molecule in the body known as TRAIL to remain ineffective in the degenerated cells. This signal molecule causes the death of cells whose functioning is impaired. TRAIL is part of the body¹s sophisticated protection program, and drives damaged cells to the suicide known as apoptosis.
Prof. Krainer and his team have now been able to establish that more than 20% of all tumour cells cannot even bind with the TRAIL molecule as they lack the receptors necessary for this, namely DR4 and DR5. Therefore TRAIL cannot activate the mechanisms necessary for apoptosis in these cancer cells. By autumn 2005 the team was able to show that modifications to the gene coding for DR4 lead to decreased production of this receptor in tumour cells, thus shedding light on the molecular mechanisms behind TRAIL resistance in ovarian carcinomas. This mechanism and its clinical significance have now been confirmed by the research.
The team has also been able to show that a further 40% of the cancer cells produce a protein which hinders the activation of the suicide program itself when binding with TRAIL takes place. This protein, known as FLIP, halts the processes activated by TRAIL in the interior of the cell. FLIP is similar in structure to the enzyme that should be activated by TRAIL, and it is this similarity that causes TRAIL to act on FLIP, instead.
The team also found that increased concentrations of TRAIL appeared in the tissue samples of advanced stage patients, and were particularly prevalent in healthy tissue close to the tumour. Prof. Krainer remarks: "It was previously anticipated that TRAIL is mainly produced by the cancer cells themselves. Healthy ovarian tissue does not normally produce TRAIL. The presence of TRAIL in this healthy tissue, observed by us for the first time, is most probably a reaction to the development of the tumour. The body is fighting back. And our data shows that patients who produce TRAIL in this tissue have a higher life expectancy." This last finding suggests that TRAIL could have therapeutic uses.
Two therapeutic approaches of this kind are indeed currently being developed. Both are based on the controlled activation of TRAIL-binding receptors. The data published in Clinical Cancer Research provides important information on the potential effectiveness of these strategies, since it will depend both on the production of this signal molecule and on the newly discovered protection mechanisms.
Original publication: Horak et al.; "Perturbation of the TRAIL cascade in ovarian cancer: Overexpression of FLIPL and deregulation of the functional TRAIL receptors DR4 and DR5."; Clin Can 2005.
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.