Emerging Technologies in Lab-on-a-Chip: Microfluidics and µTAS

Key Developments in Microfluidics and µTAS Accelerates the Commercial Acceptance of Lab-on-a-chip Technology

30-Sep-2004

London, UK. Lab-on-a-chip (LOC) development has skyrocketed in the last couple of years due to constant efforts in harnessing microfluidics and µTAS to improve the LOC design and function. The distinct advantages that they bestow on applications are pushing the commercial potential of LOCs.

LOCs will have a significant impact on the diagnostics industry, both in terms of centralised lab analysis and point-of-care testing. With the current worldwide market for diagnostics well over USD 25 billion, LOCs have immense potential in this area.

"While conventional laboratory analysis is time consuming, tedious, and requires expensive equipment and highly trained personnel, bench-top analysis in LOCs can be several times cheaper and faster," explains Analyst Katherine Austin from Technical Insights (http://technicalinsights.frost.com), a business unit of Frost & Sullivan.

LOCs are also making their mark in high throughput drug screening. Analysis of potential drug candidates is a large-scale and automated process, requiring technology that achieves higher accuracy and throughput compared to standard, macroscale, automated equipment.

"This dynamic, coupled with the need to reduce sample volumes and reagent costs, makes drug discovery and development a prime target for LOCs that offer precision, flexibility, and ease-of-use," asserts Dr. Austin.

The need to combat terrorism and biowarfare is also driving LOC research, making it the 'next big thing' in bioanalytical applications. Besides DNA analysis, there is a growing demand for easy-to-use analytical LOC systems that ensure safety of air, food, and water.

Much of the success of microfluidics and µTAS in creating commercially viable LOC devices is, in large part, due to enabling technologies such as Micro-Electromechanical Systems (MEMS), which enables production of several identical systems concurrently.

In Italy, researchers are leveraging the benefits of MEMS technology to develop a prototype silicon chip that shows great potential for both medical and environmental applications. The chip has excellent thermal properties, ideal for DNA analysis techniques such as polymerase chain reaction (PCR).

Microfluidics and µTAS researchers are also considering the use of polymers and plastics in the LOC design in order to reduce the costs associated with silicon and glass. Despite initial compatibility issues, researchers are learning to work with plastics by applying surface modifications or coatings and manipulating polymer chemistry.

A significant portion of the commercial manufacturing of LOCs currently focuses on disposable chips, cards, or discs through inexpensive injection moulding. These LOCs are easier to manufacture and handle, enabling the development of lower cost, more rugged and flexible electronic devices.

The high development cost of microfluidics and µTAS technologies is a significant issue that threatens to slow the adoption of LOC devices. In addition, the key to LOCs' long-term commercial success is for researchers to look beyond the design mechanics and gain a better understanding of exact market needs.

Many target customers have already installed expensive dispensers and high-throughput screening systems, which means that the market for LOC microfluidic systems is likely to be limited unless the technology demonstrates sufficient benefits to justify additional investment, or sufficient flexibility to integrate into existing systems.

"Portability, rapid assay times, and smaller sample requirements are predicted to aid in the early adoption of LOC technology by the defence and public health sectors. These attributes are likely to take precedence over cost," notes Dr. Austin.

Microfluidic and µTAS research is also moving away from single-task devices that are not reconfigurable towards integrating multiple functions such as sample preparation, enzymatic reactions, filtration, and electrospray ionization onto the same chip.

In Sweden, researchers have developed a nano-lab on a CD, which can process 480 protein samples simultaneously within an hour, for peptide mapping or sequence analysis in mass spectrometry. It is expected to gain wide acceptance in proteomics while popularising the use of microfluidics and µTAS in other fields.

The timing is perfect to stretch the limits of microfluidics and µTAS for LOC development. At this point, almost anything can be embedded into an active microfluidics LOC, including sensors, filtration membranes, optics, digital readouts, and global positioning system chips.

If you are interested in an analysis overview providing summary, challenges and latest trends in Emerging Technologies in Lab-on-a-chip: Microfluidics and µTAS - then please click on 'Request Information'.

Other news from the department business & finance

These products might interest you

Hydrosart® Ultrafilter

Hydrosart® Ultrafilter by Sartorius

Efficient ultrafiltration for biotech and pharma

Maximum flow rates and minimum protein loss with Hydrosart® membranes

Ultra-filtration membranes
Hydrosart® Microfilter

Hydrosart® Microfilter by Sartorius

Hydrophilic microfilters for bioprocesses

Minimal protein adsorption and high flow rates

microfilters
Sartobind® Rapid A

Sartobind® Rapid A by Sartorius

Efficient chromatography with disposable membranes

Increase productivity and reduce costs with fast cycle times

membranes
Sartopore® Platinum

Sartopore® Platinum by Sartorius

Efficient filtration with minimal protein adsorption

Reduces rinsing volume by 95 % and offers 1 m² filtration area per 10"

filter membranes
Polyethersulfone Ultrafilter

Polyethersulfone Ultrafilter by Sartorius

Reliable filtration with PESU membranes

Perfect for biotechnology and pharmaceuticals, withstands sterilisation and high temperatures

membrane filters
Polyethersulfone Microfilter

Polyethersulfone Microfilter by Sartorius

Biotechnological filtration made easy

Highly stable 0.1 µm PESU membranes for maximum efficiency

microfilters
Loading...

Most read news

More news from our other portals

So close that even
molecules turn red...

See the theme worlds for related content

Topic world Pipetting

Pipetting is one of the most basic yet critical techniques in the laboratory. It enables the precise and controlled transfer of liquids, which is essential for accurate measurements and reliable results. Whether in DNA analysis, cell culture or biochemical assays, correct pipetting significantly influences the quality of the results.

10+ products
5+ whitepaper
10+ brochures
View topic world
Topic world Pipetting

Topic world Pipetting

Pipetting is one of the most basic yet critical techniques in the laboratory. It enables the precise and controlled transfer of liquids, which is essential for accurate measurements and reliable results. Whether in DNA analysis, cell culture or biochemical assays, correct pipetting significantly influences the quality of the results.

10+ products
5+ whitepaper
10+ brochures

Topic world Diagnostics

Diagnostics is at the heart of modern medicine and forms a crucial interface between research and patient care in the biotech and pharmaceutical industries. It not only enables early detection and monitoring of disease, but also plays a central role in individualized medicine by enabling targeted therapies based on an individual's genetic and molecular signature.

1 products
1 whitepaper
1 brochures
View topic world
Topic world Diagnostics

Topic world Diagnostics

Diagnostics is at the heart of modern medicine and forms a crucial interface between research and patient care in the biotech and pharmaceutical industries. It not only enables early detection and monitoring of disease, but also plays a central role in individualized medicine by enabling targeted therapies based on an individual's genetic and molecular signature.

1 products
1 whitepaper
1 brochures

Topic World Mass Spectrometry

Mass spectrometry enables us to detect and identify molecules and reveal their structure. Whether in chemistry, biochemistry or forensics - mass spectrometry opens up unexpected insights into the composition of our world. Immerse yourself in the fascinating world of mass spectrometry!

3 products
3 brochures
View topic world
Topic World Mass Spectrometry

Topic World Mass Spectrometry

Mass spectrometry enables us to detect and identify molecules and reveal their structure. Whether in chemistry, biochemistry or forensics - mass spectrometry opens up unexpected insights into the composition of our world. Immerse yourself in the fascinating world of mass spectrometry!

3 products
3 brochures