'Molecular prosthetics' can replace missing proteins to treat disease
"If you've lost a hand, even a simple prosthetic device is really helpful. In the same way, we found that a small molecule that replicates the main job of a missing protein can be sufficient to restore functionality in cells and animals," said Dr. Martin D. Burke, the leader of the study. Burke is a professor of chemistry at Illinois and the interim associate dean for research at the Carle Illinois College of Medicine.
"If you're sick because you have too much protein function, in many cases we can do something about it. But if you're sick because you're missing a protein that does an essential function, we struggle to do anything other than treat the symptoms. It's a huge unmet medical need," said Burke, who also is a medical doctor.
Burke's team found that a small molecule called hinokitiol, derived from a species of cypress tree found in Japan, can transport iron across cell membranes that are missing transport proteins.
In a healthy system, transport proteins move iron across cell membranes to uptake iron from the gut or make hemoglobin for red blood cells. But when the transport protein is missing, iron can't cross the membrane, causing anemia. The researchers found that three hinokitiol molecules can wrap around an iron atom and transport it directly across the membrane where the missing protein should be.
The researchers tested hinokitiol in mice, rats and zebrafish that were missing iron-transport proteins. They found that orally administered hinokitiol restored iron uptake in the guts of mice and rats, and that simply adding it to the tank of anemic zebrafish prompted hemoglobin production. They also found that it restored iron transport in human cells taken from the lining of the gut.
Next, Burke's group hopes to find more small molecules that can function as molecular prosthetics for other diseases caused by protein deficiencies, with a particular focus on cystic fibrosis.
"These findings suggest that replacing missing proteins with molecular-scale prosthetics may represent a general way to think about treating a wide range of human diseases that have thus far remained out of reach with traditional medicine," Burke said.
Original publication
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.