Gut bacteria affect ageing
© D. R. Valenzano
The turquoise killifish is just a few months old when physical decline sets in. The African fish undergoes all the developmental stages, from hatching to dying, at speed and thus represents the ideal model organism for ageing research. Its short lifespan is comparable to that of the nematode worm C.elegans and the fruit fly Drosophila, which the researchers also studied for signs of ageing. In contrast to both of these, the killifish is a vertebrate and thus more closely related to humans than insects and worms. It means that scientists can obtain information from this fish that would otherwise take years to obtain from other vertebrates.
The turquoise killifish’s gut microbiota is similar in its diversity and composition to that of humans. The microorganisms in the intestines affect the absorption of food, the metabolism and the immune system. As is the case with humans, ageing affects the composition of the microbial community: while many different species of bacteria ensure a healthy gut when young, this diversity not only diminishes in old age but the existing bacteria also contain a larger proportion of pathogens.
As part of their study, scientists working with Dario Riccardo Valenzano at the Max Planck Institute in Cologne treated a number of 9.5-week-old killifish with antibiotics to clear out their intestinal flora. They then exposed these middle-aged animals to the intestinal contents of younger, 6-week-old killifish in an aquarium. When the animals ‘taste’ the particles swimming around them, they also inevitably absorb the gut bacteria in the faecal remains swimming in the water. In this way, the bacteria from the young fish are successfully ‘transplanted’ into the older organism and colonize its gut. The older fish that receive the young intestinal microbiota not only live considerably longer than fish that were exposed only to their own gut microbiota or to those of animals of the same age, these ‘geriatric’ killifish, aged 16 weeks, are also as agile as young fish.
It is still not clear how exactly the microbes affect longevity. “It is possible that an ageing immune system is less effective at protecting the microorganisms in the intestines, with the result that there is a higher prevalence of pathogens in older guts. The gut microbiota in a young organism could help to counter this and therefore support the immune system and prevent inflammation. This could lead to longer life expectancy and better health,” says Valenzano.
Original publication
Most read news
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.