It is easier for a DNA knot...
Antonio Suma, SISSA
"Our computational study sheds light on the latest experimental breakthroughs on knotted DNA manipulation and adds interesting and unexpected elements" explains Micheletti. "We first observed how knotted DNA filaments pass through minuscule pores with diameter of about 10 nanometers (10 billionths of a meter). The behaviour observed in our simulations was in good agreement with the experimental measurements obtained by an international research team led by Cees Dekker, which were published only a few months ago in Nature Biotechnology. These advanced and sophisticated experiments marked a turning point for understanding DNA knotting. However, current experiments cannot "see" how DNA knots actually pass through the narrow pore". In fact, the phenomenon occurs over a tiny spatial scale, and therefore inaccessible to microscopes. This is precisely the reason why our group resorted to what the great German biophysicist Klaus Schulten called "the computational microscope", that is, computer simulations".
Suma and Micheletti explain: "The simulations revealed that the passage of the knot can occur in two distinct ways: one where the knot is tight, and the other where the knot is more delocalised. In both cases, the knot not only manages to pass through the pore, but it does so in a very brief time". Moreover, the knot usually passes in the final stages of the translocation, when most of the DNA strand has already passed. "But there is something more that is counterintuitive" state the authors, "the size of the knot, be it small or large, does not seem to affect much the pore obstruction time. The latter depends instead on the translocation speed, which, in turn, depends on the initial position of the knot along the filament". These results, say the researchers, ought to help the design of future experiments probing the spontaneous knotting of DNA, a still largely unexplored venue, especially regarding the size of DNA knots.
Advancing our current understanding of knots in biological molecules is important to clarify their implications in biological contexts as well as in applicative ones, such as DNA sequencing using nanopores. Suma and Micheletti hope that the promising directions suggested by their study can lead to a more detailed and accurate profiling of entanglement in DNA, RNA and proteins.
Original publication
Original publication
Topics
Organizations
Other news from the department science
These products might interest you
JEOL CRYO ARM by JEOL
Cryo-TEM: Fast and stable data acquisition for biosamples
Increased efficiency in structural biology with automated sample loading system
FLUOVIEW FV4000 by EVIDENT
Revolutionary imaging with FLUOVIEW FV4000: Confocal laser scanning
Utilise AI-powered image processing and innovative detector technology
alpha300 R by WITec
3D Raman microscopes with unequalled speed, sensitivity and resolution
Visualize and characterize every chemical detail
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.