Organ-on-a-chip model offers insights into premature aging and vascular disease
The new organ-on-a-chip device consists of a top fluidic channel and underlying vacuum channel, which mimics, upon pressure, the mechanical stretching that cells experience within blood vessels. The team found that cells derived from HGPS donors but not from healthy donors showed an exacerbated response to biomechanical strain, with an increase in markers of inflammation, which are strongly associated with vascular disease and aging.
"Vascular diseases and aging are intimately linked yet rarely studied in an integrated approach," the authors write. "Gaining a deeper understanding of the molecular pathways regulating inflammation during vascular aging might pave the way for new strategies to minimizing cardiovascular risk with age."
Original publication
Original publication
João Ribas, Yu Shrike Zhang, Patrícia R. Pitrez, Jeroen Leijten, Mario Miscuglio, Jeroen Rouwkema, Mehmet Remzi Dokmeci, Xavier Nissan, Lino Ferreira, Ali Khademhosseini; "Biomechanical Strain Exacerbates Inflammation on a Progeria‐on‐a‐Chip Model"; Small; 2017
Topics
Organizations
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.