Machine-learning driven findings uncover new cellular players in tumor microenvironment
Involvement of adipocytes in nivolumab response in ipilimumab resistant melanoma patients
CytoReason / AACR
Analysis of data from melanoma biopsies, using CytoReason's proprietary machine learning-based approach, identified cells and genes that distinguish between nivolumab responders and non-responders in a cohort of ipilimumab resistant patients. The analysis revealed that adipocyte abundance is significantly higher in ipilimumab resistant nivolumab responders compared to non-responders (p-value = 2x10-7). It also revealed several undisclosed potential new targets that may be valuable in the quest for improved therapy in the future.
Adipocytes are known to be involved in regulating the tumor microenvironment. However, what these findings appear to show is that adipocytes may play a previously unreported regulatory role in the ipilimumab resistant nivolumab sensitive patient population, possibly differentiating nivolumab responders vs non-responders. It should be noted that these are preliminary findings based on a small sample of patients, and further work is needed to validate the results.
"The adipocyte finding was unexpected and raises many questions about the role of adipocytes in the tumor/immune response interface. It is currently unclear if adipocytes are affected by the treatment or vice versa, or represent a different tumor type", said Yair Benita, Head of Scientific Operations at CytoReason. "However, what we do know is that CytoReason's technology has put the spotlight on adipocytes, and the need to build a strategy to track them in future studies, so as to better understand their possible role in immunotherapy"
Gene expression analysis is a powerful tool in advancing our understanding of disease. However, approximately 90% of the specific pattern of cellular gene expression signature is driven by the cell composition of the sample. This obfuscates the expression profiling, making identification of the real culprits highly problematic.
CytoReason's platform works to overcome these issues. In this study, using a single published data set, CytoReason was able to apply its knowledge base and technologies to rebuild cellular composition and cell specific expression. This enabled CytoReason to undertake a cell level analysis, uncovering hidden cellular activity that was mapped back to specific genes that can be shown to emerge only when therapy is showing and effect.
"The immune system is predominantly cell-based. CytoReason is unique in that our disease models are specifically designed on a cellular level - replicating biology to crack key biological challenges, while learning from every data set", said David Harel, CEO, CytoReason. "CytoReason's computational platform integrates genetics, genomics, proteomics, cytometry and literature with machine learning to create our disease models. This analysis further demonstrates CytoReason's ability to generate novel hypotheses for new biological relationships that are often hidden to conventional methods - providing vital clues that are highly valuable in the drug discovery and development process."
Most read news
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
See the theme worlds for related content
Topic world Antibodies
Antibodies are specialized molecules of our immune system that can specifically recognize and neutralize pathogens or foreign substances. Antibody research in biotech and pharma has recognized this natural defense potential and is working intensively to make it therapeutically useful. From monoclonal antibodies used against cancer or autoimmune diseases to antibody-drug conjugates that specifically transport drugs to disease cells - the possibilities are enormous
Topic world Antibodies
Antibodies are specialized molecules of our immune system that can specifically recognize and neutralize pathogens or foreign substances. Antibody research in biotech and pharma has recognized this natural defense potential and is working intensively to make it therapeutically useful. From monoclonal antibodies used against cancer or autoimmune diseases to antibody-drug conjugates that specifically transport drugs to disease cells - the possibilities are enormous
Topic World Cell Analysis
Cell analyse advanced method allows us to explore and understand cells in their many facets. From single cell analysis to flow cytometry and imaging technology, cell analysis provides us with valuable insights into the structure, function and interaction of cells. Whether in medicine, biological research or pharmacology, cell analysis is revolutionizing our understanding of disease, development and treatment options.
Topic World Cell Analysis
Cell analyse advanced method allows us to explore and understand cells in their many facets. From single cell analysis to flow cytometry and imaging technology, cell analysis provides us with valuable insights into the structure, function and interaction of cells. Whether in medicine, biological research or pharmacology, cell analysis is revolutionizing our understanding of disease, development and treatment options.