Fluorescence dyes from the pressure cooker
TU Wien
From big molecules to small molecules
Previously, Miriam Unterlass' team had developed a novel process for high-performance polymers, which equally takes place in hot water. The hydrothermal synthesis of perylene bisimide dyes now shows for the first time that small molecules can also be generated "in the pressure cooker". The order of developments is rather untypical. Normally, novel synthetic pathways are first developed for small molecules - which are often easier to conceive - and later transposed to polymers, i.e. "big molecules". Despite their small size, the hydrothermal synthesis was however very challenging. For perylene bisimides. They are very apolar, which means that they do not like water - at room temperature. By heating the water to increased temperatures, this challenge can however be met. The hydrothermal synthesis of perylene bisimides is highly efficient and environmentally friendly.
Original publication
Original publication
Baumgartner, Bettina and Svirkova, Anastasiya and Bintinger, Johannes and Hametner, Christian and Marchetti-Deschmann, Martina and Unterlass, Miriam M.; "Green and highly efficient synthesis of perylene and naphthalene bisimides in nothing but water"; Chem. Comm.; 2017
Topics
Organizations
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.