Brain activity predicts the force of your actions
A clear link between the activity in nerve clusters in the brain and the amount of force generated in a physical action has been demonstrated by Oxford University researchers, opening the way for the development of better devices to assist paralysed patients.
Coordinated patterns of electrical activity in the basal ganglia – clusters of nerve cells in the brain – were shown to predict how much force is generated in the voluntary physical actions they help control, such as making a fist or raising a leg.
Working with patients who were receiving deep brain stimulation - a surgical procedure used to treat some neurological symptoms of Parkinson's disease, such as tremors or rigidity – the researchers found a link between the electrical fields generated in the nerve clusters of the basal ganglia and the gripping force the patient produced. The findings could help to explain what goes wrong in conditions such as Parkinson’s disease.
The research demonstrates that the way these activities in the basal ganglia combine to produce a physical effect can accurately be described mathematically. Progress has already been made on devices that assist paralysed patients with movement, but this new research will make it possible to produce devices that regulate the force or speed of the movements.
Professor Peter Brown, from the Medical Research Council Brain Network Dynamics Unit at the University of Oxford, who led the research, said: 'Tremendous strides are being made in producing brain-machine-interfaces, which have enormous medical treatment and rehabilitation potential.
'Our results suggest how the basal ganglia help to direct parts of the brain controlling muscle responses, and how this might go wrong in Parkinson’s disease. The accuracy with which force could be predicted raises the possibility of producing high-performance control signals for brain-controlled devices, offering the fine-tuning that would be necessary for more delicate and complex tasks like picking up objects.
'The next step will be to test how well the features that we have identified can control brain-machine-interfaces in practice, particularly in chronically paralysed patients. We will also need to test whether additional recordings from other brain sites are needed to adequately control assistive devices.'
Original publication
Tan, Huiling and Pogosyan, Alek and Ashkan, Keyoumars and Green, Alexander L and Aziz, Tipu and Foltynie, Thomas and Limousin, Patricia and Zrinzo, Ludvic and Hariz, Marwan and Brown, Peter; "Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans"; eLife; 2016
Most read news
Original publication
Tan, Huiling and Pogosyan, Alek and Ashkan, Keyoumars and Green, Alexander L and Aziz, Tipu and Foltynie, Thomas and Limousin, Patricia and Zrinzo, Ludvic and Hariz, Marwan and Brown, Peter; "Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans"; eLife; 2016
Topics
Organizations
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.