A new animal model to understand metastasis in sarcomas
IDIBELL
"We believe that this orthotopic model recapitulates more closely the metastatic steps in ES as the primary tumor grows in its natural environment" explains Dr Martínez-Tirado. Orthotopic models are based on the implantation of tumor cells directly into the organ of origin, which allows interaction between these cells and the surrounding host tissues. In this case, ES cells were injected into the calf muscles of the mouse, and once the tumor reached a certain volume, the muscles were surgically resected. "This procedure involves a low-aggressive surgery that allows the survival of the mice with a normal mouse life for a period long enough for the development of distant metastases", says the researcher.
Orthotopic models are considered more clinically relevant and better predictive models, as it has been shown that the interaction of tumor cells with its natural environment affects their growth, differentiation, and drug sensitivity. Moreover, injected tumor cells can spread to metastatic sites in other organs, with specificities comparable to the human situation. "Thanks to this approach, we were able to identify how the CAV1 protein regulates a pro-metastatic pathway in ES and the role of the RPS6 and RSK1 proteins as key nodes of this process. ES patients could potentially benefit from these findings."
Ewing sarcoma (ES) is a bone and soft tissue sarcoma affecting mostly children and young adults. It is very aggressive and highly metastatic; approximately, one third of ES patients present metastasis at diagnosis, being lung and bone marrow the most common sites. "The treatment and prognosis of patients are determined among other factors by the presence of these metastases. Therefore, a full comprehensive understanding of ES metastatic process is mandatory to develop novel therapeutic strategies. That is why this in vivo orthotopic animal model may be an extremely useful asset to study metastases not only in ES but in other sarcomas too" Martínez-Tirado concludes.
Original publication
Laura Lagares-Tena, Silvia García-Monclús, Roser López-Alemany, Olga Almacellas-Rabaiget, Juan Huertas-Martínez, Miguel Sáinz-Jaspeado, Silvia Mateo-Lozano, Carlos Rodríguez-Galindo, Santiago Rello-Varona, David Herrero-Martín, Oscar M. Tirado; "Caveolin-1 promotes Ewing sarcoma metastasis regulating MMP-9 expression through MAPK/ERK pathway"; Oncotarget; 2016
Original publication
Laura Lagares-Tena, Silvia García-Monclús, Roser López-Alemany, Olga Almacellas-Rabaiget, Juan Huertas-Martínez, Miguel Sáinz-Jaspeado, Silvia Mateo-Lozano, Carlos Rodríguez-Galindo, Santiago Rello-Varona, David Herrero-Martín, Oscar M. Tirado; "Caveolin-1 promotes Ewing sarcoma metastasis regulating MMP-9 expression through MAPK/ERK pathway"; Oncotarget; 2016
Organizations
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.