Transplanted nerve cells survive a quarter of a century in a Parkinson's disease patient
Ever since the first transplantations were carried out, a fundamental question has been whether the transplanted cells and their neural connections could survive and function over time despite ongoing disease in the patient's brain. Now researchers at Lund University have proven that transplanted nerve cells can survive for many years and restore normal dopamine production in the transplanted part of the brain.
"Our findings show that transplanted nerve cells can survive and function for many years in the diseased human brain", says Professor Olle Lindvall, one of the researchers behind the study. "This is the first time a patient has shown such a well-functioning transplant so many years after transplantation of nerve cells to the brain. At the same time, we have observed that the transplant's positive effects on this patient gradually disappeared as the disease spread to more structures in the brain."
The researchers followed a patient with Parkinson's disease who underwent transplantation of dopamine-producing nerve cells 24 years before death. The patient showed such marked improvement that medication with L-dopa was no longer necessary three years after the transplantation. Brain-imaging technology allowed the researchers to show that dopamine function was completely normal in the transplanted brain structure ten years after the operation. The new study analyses the patient's brain and the researchers can now prove that the transplanted dopamine-producing cells and their normal neural connections are still present almost a quarter of a century after the operation.
"This gives us a better understanding of how Parkinson's disease spreads in the brain", explains Professor Jia-Yi Li, who led the study together with Olle Lindvall and Anders Björklund.
"This study is completely unique", says Professor Anders Björklund. "No transplanted Parkinson's patient has ever been followed so closely and over such a long period. The patient was also unique in the sense that the nerve cells were only transplanted to one hemisphere of the brain, which meant that the other, which did not receive any transplant, could function as a control. What we have learnt from the study of this patient will be of great value for future attempts to transplant dopamine-producing nerve cells obtained from stem cells, a new development led by researchers in Lund."
Original publication
Wen Li, Elisabet Englund, Håkan Widner, Bengt Mattsson, Danielle van Westen, Jimmy Lätt, Stig Rehncrona, Patrik Brundin, Anders Björklund, Olle Lindvall, and Jia-Yi Li; "Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain"; PNAS; 2016
Most read news
Original publication
Wen Li, Elisabet Englund, Håkan Widner, Bengt Mattsson, Danielle van Westen, Jimmy Lätt, Stig Rehncrona, Patrik Brundin, Anders Björklund, Olle Lindvall, and Jia-Yi Li; "Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain"; PNAS; 2016
Organizations
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.