Scientists sharpen their molecular scissors and expand the gene editing toolbox
Free-Photos; pixabay.com; CC0
CRISPR (clustered regularly interspaced short palindromic repeats) technology is used to alter DNA sequences and modify gene function. CRISPR/Cas9 is an enzyme that is used like a pair of scissors to cut two strands of DNA at a specific location to add, remove or repair bits of DNA. But CRISPR/Cas9 is not 100 percent accurate and could potentially cut unexpected locations, causing unwanted results.
"One of the major challenges of CRISPR/Cas9 mRNA technologies is the possibility of off-targets which may cause tumors or mutations," said Baisong Lu, Ph.D, assistant professor of regenerative medicine at WFIRM and one of the lead authors of the paper. Although other types of lentivirus-like bionanoparticles (LVLPs) have been described for delivering proteins or mRNAs, Lu said, "the LVLP we developed has unique features which will make it a useful tool in the expanding genome editing toolbox."
To address the inaccuracy issue, WFIRM researchers asked the question: Is there a way to efficiently deliver Cas9 activity but achieve transient expression of genome editing proteins? They tested various strategies and then took the best properties of two widely used delivery vehicles - lentivirus vector and nanoparticles - and combined them, creating a system that efficiently packages Cas9 mRNA into LVLPs, enabling transient expression and highly efficient editing.
Lentiviral vector is a widely used gene delivery vehicle in research labs and is already widely used for delivering the CRISPR/Cas9 mRNA technology for efficient genome editing. Nanoparticles are also being used but they are not as efficient in delivery of CRISPR/Cas9.
"By combining the transient expression feature of nanoparticle-delivery strategies while retaining the transduction efficiency of lentiviral vectors, we have created a system that may be used for packaging various editor protein mRNA for genome editing in a 'hit and run' manner," said Anthony Atala, M.D., director of WFIRM and co-lead author of the paper. "This system will not only improve safety but also avoid possible immune response to the editor proteins, which could improve in vivo gene editing efficiency which will be useful in research and clinical applications."
Original publication
Baisong Lu, Parisa Javidi-Parsijani, Vishruti Makani, Farideh Mehraein-Ghomi, Walaa Mohamed, Sarhan Dongjun, Sun Kyung, Whan Yoo, Zachary P Atala, Pin Lyu, Anthony Atala; "Delivering SaCas9 mRNA by lentivirus-like bionanoparticles for transient expression and efficient genome editing"; Nucleic Acid Research; 2019
Most read news
Original publication
Baisong Lu, Parisa Javidi-Parsijani, Vishruti Makani, Farideh Mehraein-Ghomi, Walaa Mohamed, Sarhan Dongjun, Sun Kyung, Whan Yoo, Zachary P Atala, Pin Lyu, Anthony Atala; "Delivering SaCas9 mRNA by lentivirus-like bionanoparticles for transient expression and efficient genome editing"; Nucleic Acid Research; 2019
Topics
Organizations
Other news from the department science
These products might interest you
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
DynaPro Plate Reader III by Wyatt Technology
Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)
Efficiently characterize your sample quality and stability from lead discovery to quality control
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.