Scientists learn how to predict plant size
Smart breeding thanks to good understanding of genetic processes
It takes a long time to develop new strains of plants with a greater yield or greater resistance to disease. Selecting the most useful crossing products, in particular, is a labor-intensive, time-consuming and expensive process. At present, breeding products must be manually infected to determine whether they are disease-resistant, while corn plants must first produce ears before their yield can be determined. This selection process can be made much more efficient by choosing plants on the basis of genetic data rather than on the basis of external characteristics. After all, many external properties are contained in DNA.
Thanks to an improved understanding of how plant growth and development are regulated at the molecular level, it is now known to a large extent which DNA sequences are responsible for which traits. By identifying the presence of such DNA sequences in seedlings, it is possible to predict at a very early stage whether the fully grown plants will be disease-resistant, even without having to infect the plants. This type of breeding is called marker-assisted breeding. A team of scientists from VIB and UGent, led by Prof. Dirk Inzé, developed a new method designed to predict the size of the leaves of a fully grown corn plant while the plant itself is still a seedling. This method is RNA-based rather than DNA-based.
RNA rather than DNA
Hereditary information is contained in DNA. However, not all information is needed in every plant cell. For instance, the genetic sequence causing plants to flower should not be activated in the roots. Before hereditary information can be expressed, the information in DNA must be transcribed to an RNA molecule, which is then translated into a protein . In other words, the set of all RNA molecules provides a much greater insight into which genes actively contribute to a growth process. Plant scientist Dr. Joke Baute, a member of Prof. Dirk Inzé’s VIB research group, and fellow scientists from the Italian Institute of Life Sciences in Pisa conducted a study into the transcriptome of the cell division zone in leaves of corn seedlings. The scientists were able to link a set of RNA molecules to external properties, which are not expressed until much later in the growth process, such as final leaf size and biomass production. This knowledge will allow breeders to make much more specific choices in the plant breeding process in the future.
Original publication
Joke Baute et al.; "Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population"; Genome Biology; 2015
Dell’Acqua et al.; "Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays"; Genome Biology; 2015
Original publication
Joke Baute et al.; "Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population"; Genome Biology; 2015
Dell’Acqua et al.; "Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays"; Genome Biology; 2015
Organizations
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.