FSU researcher identifies protein with promise for cancer therapy
The key, said Kaplan, a College of Medicine Department of Biomedical Sciences researcher, is a protein called Treslin.
"It can target cancer cells," he said. "Most chemotherapy also targets rapidly dividing normal cells, but this seems to have promise for not doing that. Drug companies are going to be excited."
"We had tried to reconstitute the chemical modification step in our lab," Kaplan said, "but we always had a weak reaction. Dozens of other labs published this kind of work, and it was always weak. Always in the back of my mind I was saying, 'Maybe something's missing.' It occurred to me that there must be some kind of activator. So we started trying different proteins."
Eventually they singled out Treslin. Treslin not only stimulates the chemical modification of the helicase, thereby activating it, but also assembles the helicase in preparation for cell division. Since cancer is the unregulated division of cells, knowing how to stop the division process is crucial to halting cancer.
"We think this is really important," Kaplan said, "because now we can take this purified Treslin and the helicase, put them in a tube and watch the chemical modification occur. Then we can add small molecule inhibitors to see if we can inhibit that. That should stop activation of the helicase. That should stop the cancer cells from dividing. You kill cancer cells but not normal cells."
Original publication
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.