Decisive steps in the initiation of programmed cell death revealed
Tübingen researchers have studied the formation of membrane pores that are critical to start the apoptosis program
The key step in apoptosis is the release of the protein cytochrome c and other apoptotic factors from the mitochondria into the cell interior. After this step, apoptosis induction is irreversible and cell’s fate is sealed. In order to allow this process, the mitochondrial membrane must be permeable. The research team has examined how the mitochondrial membrane becomes permeable. Their experiments on artificial membrane systems showed that the Bax protein initially is inserted into the membrane as a single molecule. Once inserted, these monomers join up in the shortest time with a second molecule of Bax to form a stable complex, the so-called Bax dimers. From these dimers larger complexes are formed. “Surprisingly, Bax complexes have no standard size, but we observed a mixture of different-sized Bax species”, says Dr. Katia Cosentino, a member of Professor García-Sáez team, “and these species are mostly based on dimer units”. These Bax complexes form the pores through which the cytochrome c exits the mitochondrial membrane.
The process of pore formation is finely controlled by other proteins. Some enable the assembly of Bax-elements, while others induce their dismantling. “The differing size of the Bax complexes in the pore formation is likely part of the reason why earlier investigations on pore formation conveyed in contradictory results” says Katia Cosentino. The researchers can now make some initial recommendations for medical intervention in the apoptotic process: In order to promote this cell “suicide,” it should be enough to initiate the first step of activating Bax proteins – because the subsequent steps of self-organization will then happen automatically. Conversely, from these new insights into the mechanism of pore formation can be concluded that apoptosis can be prevented when drugs force the dismantling of the Bax-dimers into their individual elements.
Original publication
Most read news
Original publication
Yamunadevi Subburaj, Katia Cosentino, Markus Axmann, Esteban Pedrueza-Villalmanzo, Eduard Hermann, Stephanie Bleicken, Joachim Spatz and Ana J. García-Sáez; "Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species"; Nature Comm.; 2015
Organizations
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.