Scientists identify important lysine-acetylation regulatory mechanisms for Ran protein
The small Ran protein is a molecular switch that can be turned on or off depending on the nucleotide charge. If this switch protein is not regulated properly, there may be far-reaching effects on essential cell functions. Using high-resolution quantitative mass spectrometry, it has recently been shown that many of many of the amino acids – the lysines – in the Ran protein can be modified by adding an acetyl group. Modifications of this type made to the folded protein, once biosynthesis is complete, essentially alter and regulate protein function. Some of the acetylation sites are to be found in highly relevant functional regions within the Ran protein.
Dr. Lammers: “With a combined synthetic biological, biochemical, and cell biological approach, we have shown that lysine acetylation regulates nearly all essential Ran functions – something that was completely unknown beforehand. For some of the sites, we have also been successful in identifying specific enzymes responsible to modify the protein in this way, adding and removing such modifications. These findings may allow us to develop novel agents for cancer therapy.”
Original publication
Other news from the department science
Most read news
More news from our other portals
See the theme worlds for related content
Topic world Protein analytics
Protein analytics provides a deep insight into these complex macromolecules, their structure, function and interactions. It is essential for discovering and developing biopharmaceuticals, understanding disease mechanisms, and identifying therapeutic targets. Techniques such as mass spectrometry, Western blot and immunoassays allow researchers to characterize proteins at the molecular level, determine their concentration and identify possible modifications.
Topic world Protein analytics
Protein analytics provides a deep insight into these complex macromolecules, their structure, function and interactions. It is essential for discovering and developing biopharmaceuticals, understanding disease mechanisms, and identifying therapeutic targets. Techniques such as mass spectrometry, Western blot and immunoassays allow researchers to characterize proteins at the molecular level, determine their concentration and identify possible modifications.