Fusion protein controls design of photosynthesis platform
Collaborative project uncovers the role of a protein in the formation and maintenance of the inner membrane structures of photosynthetic systems
Chloroplasts are organelles found in higher plants and green algae. They contain an internal membrane system, so-called thylakoid membranes, where the key processes of photosynthesis take place. "A detailed understanding of photosynthesis and the associated molecular processes is essential to properly comprehend life on our planet," emphasized Professor Dirk Schneider of the Institute of Pharmaceutical Sciences and Biochemistry at JGU, who coordinated the study. "Despite the significance of the process, we know almost nothing about how these special membranes are formed and maintained." It had not previously been possible to identify a single fusion-mediating protein in photosynthetic cells, even though it was perfectly clear that such proteins have to be involved in the development of thylakoid membranes.
With this in mind, the Mainz-based research team isolated and investigated the protein IM30 from a blue-green alga, which might be classified as a "free-living chloroplast." IM30 – the "IM" stands for "internal membrane" while 30 is its atomic mass (30 kilodaltons) – was first described in the mid-1990s and it was demonstrated that it binds to internal membranes. Thanks to the combined expertise of the teams headed by Professor Dirk Schneider, Professor Jürgen Markl of the JGU Institute of Zoology, and Professor Tobias Weidner of the Max Planck Institute for Polymer Research it has now emerged that IM30 forms a ring structure that specifically interacts with phospholipids of the membranes. "This binding alters the membrane structure and under certain conditions can lead to membrane fusion," explained Schneider. In absence of IM30, thylakoid membranes are noticeably deteriorated, which can subsequently lead to loss of cell viability. The IM30 fusion protein provides a starting point for future research, unraveling new types of membrane fusion mechanisms in chloroplasts and blue-green algae.
Original publication
Other news from the department science
These products might interest you
Hydrosart® Ultrafilter by Sartorius
Efficient ultrafiltration for biotech and pharma
Maximum flow rates and minimum protein loss with Hydrosart® membranes
Hydrosart® Microfilter by Sartorius
Hydrophilic microfilters for bioprocesses
Minimal protein adsorption and high flow rates
Sartobind® Rapid A by Sartorius
Efficient chromatography with disposable membranes
Increase productivity and reduce costs with fast cycle times
Sartopore® Platinum by Sartorius
Efficient filtration with minimal protein adsorption
Reduces rinsing volume by 95 % and offers 1 m² filtration area per 10"
Polyethersulfone Ultrafilter by Sartorius
Reliable filtration with PESU membranes
Perfect for biotechnology and pharmaceuticals, withstands sterilisation and high temperatures
Polyethersulfone Microfilter by Sartorius
Biotechnological filtration made easy
Highly stable 0.1 µm PESU membranes for maximum efficiency
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.