New insights that link Fragile X Syndrome (FXS) and Autism Spectrum Disorders (ASD)
Crucial role for FMRP (Fragile X Mental Retardation Protein) in embryonic development of the brain cortex
The discovery in brief: FMRP, an important player in the development of our brain
The study of the Fragile X syndrome (FXS) has been the research object of Claudia Bagni and her team for more than 15 years. Using a mouse model for FXS, her collaborators Giorgio La Fata, Annette Gärtner and Nuria Domínguez-Iturza could prove that FMRP regulates the maturation (multipolar to bipolar) and positioning of the brain cells in the cortex during embryonic development. Furthermore the team unraveled the molecular mechanism through which FMRP regulates this processes and were able, upon the reintegration of FMRP in the embryo, to normalize the early postnatal brain wiring deficits.
The brain cortex is the domain of the brain where information from the rest of the body is received, processed and interpreted. The elaborated information is then converted into thoughts and concrete driving signals for the body. Thus, mistakes or delays in the correct development of the brain cortex are thought to lead to an impaired ability to interpret and process information required for our daily life. Because affected brain connectivity is a hallmark of ASD, this study might explain why some patients with FXS have autism-related symptoms.
FMRP is a key regulator of cell shape and polarity
The team could demonstrate that in a healthy brain FMRP assures the correct production of the protein N-Cadherin. In the absence of FMRP the levels of N-cadherin are reduced with the consequence that neuronal cells are delayed in their maturation, a developmental program called multipolar to bipolar transition, which is prerequisite for correct positioning in the cortex during development. In collaboration with Carlos Dotti (VIB/KULeuven) and Meredith Rhiannon (VU University of Amsterdam), the team showed that the re-introduction of FMRP or N-cadherin before birth normalized the maturation and positioning of the brain cells and the wiring deficits observed at early postnatal stages.
Into sophisticated MRI for diagnosis of intellectual disabilities
Finally, in collaboration with the team of Uwe Himmelreich (MOSAIC, KU Leuven) the VIB/KUL/TV scientists combined the cellular and molecular approaches with high-resolution DTI-MRI (Diffusion-Tensor Imaging - Magnetic Resonance Imaging). Currently, DTI-MRI is one of the most powerful tools to anatomically investigate brain connectivity, as it can be used to study the orientation and integrity of white matter tracts. Taking advantage of an extremely powerful MRI system for small animals, which enables to scan the brains of FXS mice, the scientists obtained structural information of the juvenile FXS mouse brain that revealed abnormalities in the connectivity of the cortex.
Claudia Bagni: “Our observations, while contributing further to the understanding of the wide spectrum of FXS symptomatology, strengthen the importance of embryonic development for postnatal brain activity and circuitry in FXS and related disorders. Impaired brain connectivity has been recognized as a candidate key defect in ASD. The future challenge will be to understand how to ameliorate those deficits at very early postnatal stages, for example “enriched environmental conditions” and also to establish sophisticated MRI strategies with prognostic value for FXS to ultimately guide parental counseling.”
Original publication
La Fata, et al.; "FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry."; Nature Neuroscience