A unique pathway for targeting new therapeutics for addiction treatment
The authors investigated the role of sorting nexin 27 (SNX27), a PDZ-containing protein known to bind GIRK2c/GIRK3 channels, in regulating GIRK currents in dopamine (DA) neurons on the ventral tegmental area (VTA) in mice.
"Our results identified a pathway for regulating the excitability of the VTA DA neurons, highlighting SNX27 as a promising target for treating addiction," said Paul A. Slesinger, PhD, Professor, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai.
"Future research will focus on the role that potassium channels and trafficking proteins have in models of addiction," said Dr. Slesinger.
Dr. Slesinger was the lead author of the study and joined by Michaelanne B. Munoz from the Graduate Program in Biology, University of California, San Diego and the Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, California.
Most read news
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.