Why does maximum heart rate drop with age?
Everybody knows that aerobic capacity decreases with age. You know that chart in your gym that shows your target heart rate decreasing as you get older? Well, that's not a senior discount to let the elderly get off easy on their treadmill workouts. It's because older hearts simply can't beat as fast as younger hearts. So the older person who's doing 120 beats per minute is probably working harder — at a higher percentage of maximum heart rate — than the younger person who is at 150 beats per minute.
A new study by a group led by Catherine Proenza, PhD and Roger Bannister, PhD from the University of Colorado School of Medicine reports that one of the reasons for the age-dependent reduction in maximum heart rate is that aging depresses the spontaneous electrical activity of the heart's natural pacemaker, the sinoatrial node.
A dissertation from Eric D. Larson, a graduate from Proenza's lab in the Department of Physiology and Biophysics, is described in the article. Larson said, "I utilized a method to record ECGs from conscious mice and found that maximum heart rate was slower in older mice, just as it is in older people. This result wasn't unexpected. But what was completely new was that the slower maxHR was because the individual pacemaker cells — called sinoatrial myocytes, or 'SAMs' — from old mice just couldn't beat as fast as SAMs from young mice."
The researchers recorded the tiny electrical signals from the isolated cells and found that SAMs from old mice beat more slowly, even when they were fully stimulated by the fight-or-flight response which can be observed in these individual cells. The slower beating rate was due to a limited set of changes in the action potential waveform, the electrical signal that is generated by the cells. The changes were caused by altered behavior of some ion channels in the membranes of the older cells. (Ion channels are proteins that conduct electricity across the cell membrane. Imagine a balloon with little tiny pinholes that open and close to let the air in and out; ion channels are like the pinholes.)
Like most initial discoveries in basic science, this study opens many more questions and avenues for further research. But the significance of the study is that it raises the possibility that sinoatrial ion channels and the signaling molecules that regulate them could be novel targets for drugs to slow the loss of aerobic capacity with age. In the meanwhile, Proenza notes that "although maximum heart rate goes down for everybody equally, regardless of physical conditioning, people can improve and maintain their aerobic capacity at all ages by exercising."
This study will be published in Proceedings of the National Academy of Sciences of the United States of America.
Other news from the department science
These products might interest you
Hydrosart® Ultrafilter by Sartorius
Efficient ultrafiltration for biotech and pharma
Maximum flow rates and minimum protein loss with Hydrosart® membranes
Hydrosart® Microfilter by Sartorius
Hydrophilic microfilters for bioprocesses
Minimal protein adsorption and high flow rates
Sartobind® Rapid A by Sartorius
Efficient chromatography with disposable membranes
Increase productivity and reduce costs with fast cycle times
Sartopore® Platinum by Sartorius
Efficient filtration with minimal protein adsorption
Reduces rinsing volume by 95 % and offers 1 m² filtration area per 10"
Polyethersulfone Ultrafilter by Sartorius
Reliable filtration with PESU membranes
Perfect for biotechnology and pharmaceuticals, withstands sterilisation and high temperatures
Polyethersulfone Microfilter by Sartorius
Biotechnological filtration made easy
Highly stable 0.1 µm PESU membranes for maximum efficiency
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.