The developmental on-switch
Substances that convert body cells back into stem cells initially activate all genes in the embryo
© Wolfgang Driever
The Freiburg scientists explain that the zebrafish Pou5f1 protein, which is very similar to the human Oct4 protein, serves as the main starting signal for embryonic development. Pou5f1 awakens the genes after the resting period following fertilization. In all animals, development is initially controlled by proteins from the mother in the egg cell; the genes of the embryo are not activated until some time later. In the zebrafish, for instance, this process is triggered as soon as the embryo has a thousand cells. This “zygotic gene activation” reprograms the cells of the embryo: Specialized, rapidly dividing cells that do not create any new gene products become stem cells. These embryo stem cells can form all cell types – like pluripotent stem cells. In the case of so-called mesodermal cells, which can form blood or muscles, the scientists demonstrate how the Pou5f1 protein sets off the cascade of gene products that create muscle, blood, or bone cells from the embryonic cells. This regulatory network is very similar to that of the pluripotent stem cells.
Researchers have been able to generate pluripotent stem cells for several years now, but have found it difficult to convert them into stable cell types with sufficient reliability – if stem cells are unstable, they can become cancerous. Using the regulatory network discovered in the zebrafish, developmental biologists can now study how particular cell types in the body are created from stem cells and what makes them stable. Scientists require reliable processes for forming stable tissue before it can be used for applications in medicine.