Scientists decode 'software' instructions of aggressive leukemia cells
Researchers locate molecules that drive the development of 3 forms of deadly white blood cell cancers, pointing researchers to new potential therapeutic targets
Abnormal Epigenetic Programming Leads to Poor Outcomes
The research team examined abnormalities in the "software" epigenetic programming that leads to the three forms of adult B-acute lymphoblastic leukemia (B-ALL), the most common form of ALL. These forms are BCR-ABL1-positive B-ALL, E2A-PBX1-positive B-ALL, and MLLr-B-ALL. These three B-ALL subtypes feature mutations of different master regulatory genes which force bone marrow cells to produce cancer-promoting proteins. Long-term survival is less than 40 percent among these patients.
"Similar to normal tissue, we believe that tumors may be dependent on specific patterns of epigenetic programming -- especially in B-ALL, where studies suggests epigenomic programming is globally disrupted," Dr. Melnick says. "Our goal was to identify epigenetically modified genes and the molecular machines that cause them to become abnormally programmed."
To that end, the research team performed DNA methylation and gene expression profiling on 215 adult B-ALL patients enrolled in the ECOG E2993 clinical trial, a multi-center and multi-national study, testing different forms of treatment in patients with ALL.
Researchers identified core epigenetic gene signatures that were associated with abnormal fusion proteins. In the case of BCR-ABL1-positive B-ALL, they found that the most deregulated gene network centered around an extraordinarily epigenetically deregulated gene they identified as interleukin-2 receptor alpha, which encodes a protein called CD25.
"Among patients who had BCR-ABL1-positive B-ALL, it was those with aberrant epigenetic programming of CD25 that had significantly worse outcome," says Dr. Melnick. "It's the patients that have this programming glitch that do really poorly." Although the researchers don't yet know what CD25 does, and why it is important, they say CD25 will be a useful biomarker to test for patients that are at highest risk for poorer outcome.
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.