New research could increase blood supplies for transfusions
Using human stem cells from sources such as cord blood and circulating blood as well as embryonic stem cells, they produced a much higher yield of red blood cells than has previously been possible. “We combined different cell expansion protocols into a ‘cocktail’ that increased the number of cells we could produce by ten to 100 fold,” Bouhassira said.
Blood transfusions, developed more than 80 years ago, are essential component of many surgeries, trauma medicine, and blood cancer therapies, and are one of the primary treatments for people with sickle cell anemia and other blood diseases. However, the blood needed for such transfusions is obtained only through donations and can be in short supply, particularly for chronically transfused people who require rare blood groups. The methods described by the researchers can be used to produce blood with any blood groups.
“The ability of scientists to grow large quantities of red blood cells at an industrial scale could revolutionize the field of transfusion medicine,” Bouhassira said. “Collecting blood through a donation-based system is serving us well but it is expensive, vulnerable to disruption and insufficient to meet the needs of some people who need ongoing transfusions. This could be a viable long-term alternative.”
More than 1010 cRBCs can now be produced using a single plate of ES cells. Combining all the known expansion methods might lead to an additional one to two orders of magnitude increase in the number of cells that can be produced from a single plate of hESCs. Therefore, production of the CD34+ cells necessary to feed bioreactors capable of producing hundreds of units of red blood cells per weeks could be done using relatively low numbers of pluripotent stem cells.
“Being able to produce red blood cells from stem cells has the potential to overcome many difficulties of the current system, including sporadic shortages,” said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. “This team has made a significant contribution to scientists’ quest to produce red blood cells in the lab.”
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.