Multiple sclerosis: New marker could improve diagnosis
Researchers identify potassium channel as an autoantibody target
Diagnosing multiple sclerosis (MS) is a challenge even for experienced neurologists. This autoimmune disease has many symptoms and rarely presents a uniform clinical picture. New scientific findings on the immune response involved in MS could now help improve the diagnosis of this illness. Scientists analyzing the blood of MS patients have discovered antibodies that attack a specific potassium channel in the cell membrane. Potassium channels play an important role in transmitting impulses to muscle and nerve cells and it is exactly these processes that are inhibited in MS patients.

Right: The autoantibody can be seen binding to the membrane of glial cells in the MS serum. By comparison, the image on the left shows a blood sample from a patient with another neurological.
KKNMS
For the first time, scientists in Germany’s multiple sclerosis competence network have been able to identify an antibody that bonds with the potassium channel KIR4.1. “We found this autoantibody in almost half of the MS patients in our study,” explains Bernhard Hemmer, Professor of Neurology at the Klinikum rechts der Isar hospital at Technische Universität München (TUM). The biomarker was not present in healthy patients. The findings could therefore indicate that KIR4.1 is one of the targets of the autoimmune response in MS. Humans and animals without the KIR4.1 channel experience neurological failure and cannot coordinate their movements properly. Furthermore, their bodies do not create sufficient amounts of myelin, a layer of insulation that protects the nerve cells.
KIR4.1 is primarily present in the membrane of glial cells, which are responsible for controlling metabolism in the brain and forming myelin. The neurologists will now be conducting follow-up studies into how KIR4.1 antibodies influence the development of MS. This autoantibody is extremely rare in people with other neurological diseases, making it an important potential diagnostic marker for MS in the future. “This autoantibody could improve diagnosis of MS and help us differentiate it more clearly from other neurological diseases,” continues Hemmer. This will also be the focus of further research.
The study was funded by Germany’s Federal Ministry of Education and Research within the framework of the competence network for multiple sclerosis (CONTROLMS research association).
Original publication
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
More news from our other portals
See the theme worlds for related content
Topic world Antibodies
Antibodies are specialized molecules of our immune system that can specifically recognize and neutralize pathogens or foreign substances. Antibody research in biotech and pharma has recognized this natural defense potential and is working intensively to make it therapeutically useful. From monoclonal antibodies used against cancer or autoimmune diseases to antibody-drug conjugates that specifically transport drugs to disease cells - the possibilities are enormous

Topic world Antibodies
Antibodies are specialized molecules of our immune system that can specifically recognize and neutralize pathogens or foreign substances. Antibody research in biotech and pharma has recognized this natural defense potential and is working intensively to make it therapeutically useful. From monoclonal antibodies used against cancer or autoimmune diseases to antibody-drug conjugates that specifically transport drugs to disease cells - the possibilities are enormous
Topic world Diagnostics
Diagnostics is at the heart of modern medicine and forms a crucial interface between research and patient care in the biotech and pharmaceutical industries. It not only enables early detection and monitoring of disease, but also plays a central role in individualized medicine by enabling targeted therapies based on an individual's genetic and molecular signature.

Topic world Diagnostics
Diagnostics is at the heart of modern medicine and forms a crucial interface between research and patient care in the biotech and pharmaceutical industries. It not only enables early detection and monitoring of disease, but also plays a central role in individualized medicine by enabling targeted therapies based on an individual's genetic and molecular signature.
Last viewed contents
Apicomplexa

Parkinson's disease involves degeneration of the olfactory system - Scientists discover anatomical link for the loss of smell in Parkinson’s disease
