A non-invasive intracellular 'thermometer' with fluorescent proteins has been created
Richard Wheeler
Information deduced from temperature
From intracellular temperature, we can deduce how the energy used by the body in the uncontrolled spreading of cancer cells flows.
In this interdisciplinary study, biology uses physical measurements of energy transmission to study processes such as gene expression, metabolism and cell splitting.
The technique used is known by the name of 'fluorescence polarisation anisotropy' (FPA) as it allows the difference in polarization between light that fluorescent molecules receive, and that which they emit later, to be measured. In the words of Quidant, "this difference in polarization (anisotropy) is directly connected to the rotating of the GFP molecules and therefore with temperature".
The green fluorescence of the proteins has a reward
The authors of the study ensure that biologists will be able to implement this technique in experimental set-ups and obtain the cell temperature as another observable detail. In 2008, when Osamu Shimomura, Martin Chalfie and Roger Y. Tsien won the Nobel Chemistry Prize for discovering and developing GFP, they resolved many complications in biomedical research.
In the field of molecular biology, different techniques have been suggested to monitor internal cell temperature, these researchers found limitations in measuring the intensity and spectrum of its fluorescence.
Furthermore, the option of measuring intracellular activity could establish the basis to develop a field that has not been widely studied: thermal biology at cellular level.
According to the authors of the study, the following step is to improve the method's sensitivity and resolution. In order to achieve that, the researchers work to fine tune the properties of the fluorescent proteins and optimise the detection method of its 'thermometer'.