Researchers create cellular automation model to study complex tumor-host role in cancer
To better understand the role complex tumor-host interactions play in tumor growth, Princeton University researchers developed a cellular automation model for tumor growth in heterogeneous microenvironments. They then used this same model to investigate the effects of pressure on the growth of a solid tumor in a confined heterogeneous environment, such as a brain cancer growing in the cranium, and discovered that pressure accumulated during tumor growth can lead to a wide spectrum of growth dynamics and morphologies for both noninvasive and invasive tumors.
Depending on the magnitude of the pressure and the physical properties of the host environment, the types of tumor patterns that emerge range from strongly malignant tumors characterized by finger-like protrusions at the tumor surface to those in which fingering growth is diminished. These results should have important applications for cancer diagnosis, prognosis, and therapy.
Original publication
Yang Jiao and Salvatore Torquato; "Diversity of dynamics and morphologies of invasive solid tumors"; AIP Advances
Most read news
Original publication
Yang Jiao and Salvatore Torquato; "Diversity of dynamics and morphologies of invasive solid tumors"; AIP Advances
Organizations
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.