How cells brace themselves for starvation
A new Weizmann Institute study, reported in Science, might provide the answer. The research was conducted in the lab of Prof. Naama Barkai of the Molecular Genetics Department by postdoctoral fellow Dr. Sagi Levy and graduate student Moshe Kafri with lab technician Miri Carmi.
It had been known for a while that when the levels of phosphate or zinc drop in the surroundings of a yeast cell, the number of "bad-times" pumps on the cell surface soars up to a hundred-fold. When phosphate or zinc becomes abundant again, the "bad-times" pumps withdraw while the "good-times" pumps return to the cell surface in large numbers.
In their new study, the scientists discovered that cells which repress their "bad-times" pumps when a nutrient is abundant were much more efficient at preparing for starvation and at recovering afterwards than the cells that had been genetically engineered to avoid this repression. The conclusion: The "good-times" pumps apparently serve as a signaling mechanism that warns the yeast cell of approaching starvation. Such advance warning gives the cell more time to store up on the scarce nutrient; the thorough preparation also helps the cell to start growing faster once starvation is over.
Thus, the dual-pump system appears to be part of a regulatory mechanism that allows the cell to deal effectively with fluctuations in nutrient supply. This clever mechanism offers the cell survival advantages that could not be provided by just one type of pump.
If these findings prove to be applicable to human cells, they could explain how our bodies maintain adequate levels of various nutrients in tissues and organs. Understanding the dual-pump regulation could be crucial because it might be defective in various metabolic disorders.
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.