The proteins ensuring genome protection
Researchers from the University of Geneva, Switzerland, discover how enzymatic onslaughts at the ends of our chromosomes are countered
Restraining the zeal of repair enzymes
Cyril Ribeyre and David Shore, from the Department of Molecular biology of the UNIGE, have discovered that Rif1 and Rif2, two related proteins that bind telomeres, deactivate the alarm of the DNA repair surveillance system. 'Telomeres interact with many molecules. We had identified several biochemical players, but we didn't know how they functioned', says Professor Shore, member of the National Center of Competence in Research Frontiers in Genetics. 'We have now established that Rif1 and Rif2 prevent the binding of specific proteins involved in setting off this alarm, which inhibits an enzymatic cascade at an early stage in the process'.
This local 'anti-enzyme shield' seems to extend to neighboring regions. 'Telomeres of adjacent chromosomes probably benefit from this protective system, in case they undergo severe damage', suggests Professor Shore.
These two related molecules had already been analyzed and part of their functions uncovered by the researcher's team. 'We knew that Rif1 and Rif2 were involved in regulating telomere length, which determines the life span of the cell. Both of them were also suspected to take part in the telomeric cap formation', details Cyril Ribeyre.
The multiple activities of Rif1 and Rif2 thus contribute to ensure the optimal functioning of telomeres with respect to their roles –all essential- within the cell.
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.